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PREFACE.

IN writing the present treatise on the INTEGRAL CALCULUS,
the object has been to produce a work at once elementary and
complete—adapted for the use of beginners, and sufficient for
the wants of advanced students. In the selection of the pro-
positions, and in the mode of establishing them, I have en-
deavoured to exhibit fully and clearly the principles of the
subject, and to illustrate all their most important results.
The process of summation has been repeatedly brought for-
ward, with the view of securing the attention of the student
to the notions which form the true foundation of the Integral
Calculus itself, as well as of its most valuable applications.
Considerable space has been devoted to the investigations of
the lengths and areas of curves and of the volumes of solids,
and an attempt has been made to explain those difficulties
which usually perplex beginners—especially with reference to
the limits of integrations.

The transformation of multiple integrals is one of the most
interesting parts of the Integral Calculus, and the experience
.of teachers shews that the usual modes of treating it are not
free from obscurity. I have therefore adopted a method dif-
ferent from those of previous elementary writers, and have
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endeavoured to render it easily intelligible by full detail, and
by the solution of several problems.

The Calculus of Variations seems to claim a place in the
present treatise with the same propriety as the ordinary theory
of maxima and minima values is included in the Differential
Calculus. Accordingly the last chapter of the treatise is
devoted to this subject; and it is hoped that the theory
and illustrations there given will be found, with respect to
simplicity and comprehensiveness, adapted to the wants of
students.

In order that the student may find in the volume all that -
he requires, a large collection of examples for exercise has
been appended to the several chapters. These examples
haye been selected from the College and University Exami-
nation Papers, and have been carefully verified, so that it is
believed that few errors will be found among them.

1. TODHUNTER.

8r JouN’S COLLEGE,
January, 1863.
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INTEGRAL CALCULUS.

CHAPTER 1.
'MEANING OF INTEGRATION. EXAMPLES,

1. Ix the Differential Calculus we have a system of
rules by means of which we deduce from any given function
a second function called the differential coefficient of the
former; in the Integral Calculus we have to return from the
differential coefficient to the function from which it was
deduced. We do not say that this is the object of the Inte-
gral Calculus, for the fundamental problem of the subject is
to effect the summation of a certain infinite series of inde-
finitely small terms; but for the solution of this problem we
must generally know the function of which a given function is
the differential coefficient. This we now proceed to shew.

2. Let ¢(x) denote any function of  which remains finite
and continuous for all values of # comprised between two
fixed values @ and b. Let x,, ,,...w, , be a series of values
lying between a and b, so that a, 2, ,, ... 2, ,, b are in order
of magnitude ascending or descenaing. ‘We propose then to
find the limit of the series

(z,—a) ¢ (a) + (z,— ) ¢ () + (2, — z,) ¢ (AR SN
‘ + (b - m-—x) ¢ (zn—1)y

when ,—a, 2,—2,,...5—2x,, are all diminished without
limit, and consequently » increased without limit.

Put z,—a=h,, ,—2,=h,,...b—x, =h,; thus the series
may be written

kl ¢ (a) + bﬁ ¢ (ml b + hﬂ-l ¢ (xl—l) + b. ¢ (z'-l)’
T.1.C. 1
<



2 MEANING OF INTEGRATION.

and may be denoted by k¢ (), for it is the sum of a number
of terms of which A¢(x) may be taken as the type. Since
each of the terms of which % is the type may be considered
as the difference between two values successively ascribed to
the variable #, we may also use the symbol ¢ (z) Az as the
. type of the terms to be summed, and 3¢ (x) Az for the sum.

‘We may shew at once that 3¢ () Az can never exceed a
certain finite quantity. For let 4 denote the numerically
greatest value which ¢ (z) can have when « lies between a and
b; then 2¢ (z) Az is numerically less than (&, + h,+...+4,) 4,
that is less than (b — a) 4.

‘We now proceed to determine the limit of 3¢ (x) Az, Let
¥ () be suc% a function of « that ¢ (x) is the differential
.coefficient of it with resgect to . Then we know that the

limit of ¥EHH ¥
¢ (z). Hence we may put

¥ (@) =¥ (a) =k {¢ (c) +p};
‘l’ (ws) - ‘P‘ (a’x) = hs {¢ (mx) + Ps}7
‘l" (a’n-1) -¥ (z-:) = }‘s-x {¢ (=, -xj + Pﬂ—x}’
v (&) - (‘tn-x) =h, {¢ (93,‘__1) + Pn}’

where p,, p,, ... p, Ultimately vanish. From these equations
we have by addition

¥ 0) ¥ (@) =3¢ (z) Az +3hp.

Now Zhp isless than (b — a) p’ where p' denotes the greatest
of the quantities p,, p,, ... p.; hence ZZp ultimately vanishes,
and'we obtain this result, the limit of 3¢ (x) Az when eack
of the quantities of which Az 1s the type diminishes indefinitely
18y () —¥(a).

8. The notation used to express the preceding result is
b
[$@do=v0) -y @;

the symbol [ is an abbreviation of the word “sum,” and dz
Tepresents the Az of 3¢ (z) Az.

when £ is indefinitely diminished is
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4, Snppose that 4, &, ... A, are all equal; then each of
them is equal to —;3, and z, is equal to a+:—‘(b—a).

1]
Hence f ¢ (z) dz is equivalent to the following direction,

“divide b — a into n equal parts, each part being %; in ¢ ()
substitute for = successively a, a + %, a+2k, ... a+ (n—1) A;
add these values together, multiply the sum by % and then
diminish A without limit.” If these operations are performed
we shall have as the result 4 (3) — 4 (a), where 4 () is the
function of which ¢ (x) is the differential coefficient with
respect to .

The student then must carefully observe that for the
foundation of the Integral Calculus we have a certain theorem
and a corresponding notation. The theorem is the following:
let 4 (x) be any function of =, and ¢ (x) its differential co-
efficient with respect to ; let n be a positive integer and
nk =b—a; then the limit when » is indefinitely increased of

h{¢ (@) + ¢ (a+E) + ¢ (at28) + ... +¢(b—k)}
is Y@ —¥(a.
The notation is that this limit is denoted by [ ' @) &z,
s0 that fb¢ (@) dz = (B) — ¥ (a)-

As a particular case we may suppose a to be zero; then
nk =5, and the limit when = is indefinitely increased of

h{¢(o)+¢(k) +¢(2h)+...+¢(b—h)}
is denoted by | :¢ (%) de, and is equal to ¥ (8) = (0).

5. A single term such as ¢ (z) Az is frequently called an
element. It may be observed that the limst of 2¢ (z) Az will
not be altered in value if we omit a finite number of its
elements, or add a finite number of similar elements; for

1—2
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in the limit each element is indefinitely small, and a finite
number of indefinitely small quantities ultimately vanishes.

6. The above process is called Integration; the quantity
f "6 (@) d is called a definits integral, and a and b are called

the Uimats of the integral. Since the value of this definite
integral is 4 (b{);—\]r (a) we must, when a function ¢ (z) is to
be integrated between assigned limits, first ascertain the
function ¥ () of which ¢ () is the differential coefficient. To
express the connexion between ¢ (x) and 4 () we have

¢ @)= d_xsa(’z) ’

and this is also denoted by the equation
[ @ =y (@.

In such an equation as the last, where we have no limits
assigned, we merely assert that +(z) is the function from
which t(:v) can be obtained by differentiation; ¥ () is here
called the indefinite integral of ¢ (). .

7. The problem of finding the areas of curves was one

of those which gave rise to the Integral Calculus, and fur-
nishes an illustration of the preceding articles.

’ .

[/ MY

Let DPE be a curve of which the equation is y=¢ (),
and suppose it required to find the area included between this

curve, the axis of «, and the ordinates corresponding to the
abscisse a and 5. Let 04 =a, OB=05; divide the space
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AB into n equal intervals and draw ordinates at the points
of division. Suppose OM =a+ (r—1)k, then the area of
the parallelogram PMNp is

h {a+(r—1) A}..

The sum found by assigning to r in this expression all values
from ‘1 to n differs from the required area of the curve by
the sum of all the portions similar to the triangle P@p, and
as this last sum is obviously less than the greatest of the
figures of which PMNQ is one, we can, by sufficiently
diminishing %, obtain a result differing as little as we please
from the required area. Therefore the area of the curve is
the limit of the series

h{¢(a)+¢(a+h)+¢(a+2h)+ ...... +¢(b—h)},
and is equal to Y (8) — ¥ (a).

8. If 4 () be the function from which ¢ (z) springs b
differentiation, we denote this by the equatio n¢( ) springs by

[$ @ do=y @,

and we now proceed to methods of finding ¥+ (x) when ¢ (z) is
given. We have shewn, Dif. Cal. Art. 102, that if two func-
tions have the same differential coefficient with respect to a
variable they can only differ by some constant %mﬁv; hence
if 4 («) be a function having ¢ () for its differential coeffi-
cient with respect to z, then \ﬁr (x} + C, where C is any quantity
independent of x, is the only form that can have the same
differential coefficient. Hence, hereafter, when we assert that
any function is the integral of a proposed function, we may
if we please add to such integral any constant quantity.

Integration' then will for some time appear to be merely
the #nverse of differentiation, and we migﬁt have so defined
it; we have however preferred to introduce at the beginning
the notion of summation because it occurs in many of the
most important applications of the subject.

We may observe that if ¢, (z) and ¢, () are any func-
tions of z, '

[6.0) + 8 @) do= 9, (0)dz + [, @) ;.
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or at least the two expressions which we assert to be equal
can only differ by a constant, for if we differentiate both we
arrive at the same result, namely, ¢, (z) + ¢, ().

Algo, if ¢ be any constant quantity
[eb (@) dz=c[$ (@) dz;

or at least the two expressions can only differ by a constant.

9. Immediate integration.

‘When a function is reco?ized to be the differential coeffi-
cient of another function we know of course the integral of the
first. The following list gives the integrals of the different
simple functions; A

i dx
fa:"da:=m, f—a—;=logz,

fa'da:=l @ fe"dz=e’,
0g,a

fsinwdx=—-cosx, fcosa:d'c=sinm,

1

f dx f dx
— =tanz, —— =—cotz,
cos’'x sm'x

dx Y ) 4
)m=8m ; or = -—Co8 Z’
dx 1, = 1 L=
a,_‘_z,—;tan 2 ot -—;cot 2

10, Integration by substitution.

The process of integration is sometimes facilitated by sub-
stituting for the variable some function of a new variable.
Suppose ¢ () the function to be integrated, and @ and b the
limits of the integral. It is evident that we may suppose
z to be a function of a new variable 2, provided that the
function chosen is capable of assuming all the values of =
required in the integration. Put then = =f(z), and let a’ and
b' be the values of z, which make f(z) or « equal to a and 5
respectively; thus a=f(a") and b=/ (}"). Now suppose that
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¥ (x) is the function of which ¢ (z) is the differential co-
efficient, that is suppose ¢ () =@d¥; then

[¢@a=yO-v@
=¥ {f ) -+ {f@)}
But by the principles of the Differential Calculus,
B sirenres

v
therefore  (f8)} — ¥ (6} =[ ¢ (F(@}f(e) da
. y dz
=[o@Fa
b ¥ dw
thus [$@a=[ 9@
This result we may write simply thus
das
[#@ do = [$ @) Z2as,
provided we remember that when the former integral is taken
between certain limits @ and 5, the latter must be taken
between corresponding limits o' and b

11. As an example of the preceding m£le let
f,/(mm; ) be required. Assume z=a—z, then E=-l
and 2ax—a2*=a'—2%. Thus

fd(2a:c o) f4(2aw w’)dz f:/(a f—2%)

48— -
=cos™ 2 =cos? 2= = vers? Z
a a

: dx . "
Agaln, let f m be reqmred. Assume :c=___z.‘
thus
de _ ¢l'z:

dz ( z)” andf ./(m a’) fzd(2am a’)dz
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PR
aV2(1-2)—(1-2)"} a)y(1-2

aT—a

1., 1.
=-8ln 2=-8
a a

Here we have found the proposed integrals by substituting
for  in the manner indicated in the preceding article. This
process will often simplitz a proposed integral, but no rules
can be given to guide the student as to the best assumption
to make; this point must be left to observation and practice.

12. Integration by parts. |

. d(uw) dv  du ‘
From the equation o =Y +v Z |

we deduce by integrating both members,
di di
uv=fu£dz+fvd—:dx,
therefore fu%dz=uv-fv%da:.

The use of this formula is called “ integration by parts.”
For a particular case suppose v=2z; then we obtain

fudm=uz—fzi—:dw.

For example, consider f z cosax dx. Since

cosaw_ldsinaa:
“a dz ’

we may write the proposed expression in the form

Jits=

and this, by the formula, supposing u =§ and v = sin az,

zsinaz [sinax
- - [Hhz g
a a

da,
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z 8in ax sin az
=== dec

a:sinaa:+eosaa:

T a a
Again, fa:’cosaa:dw=fw—’d8inaz¢h
z’smw—f—sinaxdw‘

a* sin ax 2a:dcosaxd$

=_ a @ dz
2*sinax .22 cos ax 2cosaz
= — dx
a a

a:'sma.’c 2x cosaxr 2sinax
e _fEnar

- a a a
Again, fe“ sin amdm—fsmaz‘flf:dz
=smame¢_j‘ae"cosazdz

nsuna:o:e,z j’acosaa:_di’dz

sinaxr , acosax a'sin ax
=~ 3 &= de.
By transposing,
' a . e /. a
(l+g')fe‘smawdac=—;(smaa:—zcosafv),

** (¢ sin az — a co8 ax)

- _e
therefore f €”sin axdr = s

Similarly we may shew that

["cos dw_e"(ccosaz+asinaz)
¢ cosaxar= a+c )
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13. The differential coefficient of any function can always
be found by the use of the rules given in the Differential
Calculus, but it is not so with the integral of any assigned
function. We know, for example, that if m be any a:x:‘?‘m-
m+1’
but when m=—1 this is not true; in this case we have

f i:—=log z. If however we had not previously}d'eﬁned the

term logarithm, and investigated the properties of a logarithm,
we slftg{lld have been unable to state what function would

give ‘l; ag its differential coefficient. Thus we may find our-

ber, positive or negative, except — 1, then fz"dx=

selves limited in our powers of .integration from our not
having given a name to every particular function and investi-
gated its groperties.

In order to effect any proposed. integration, it will often
be necessary to use artifices which can only-be suggested
by practice.

14. We add a few miscellaneous examples.
Ex. (1). [J(a’—-z’) dz.

fV(a’—a:') de=z/(a"— ") +17;:%:,7, by Art. 12, sup-
posing u=4/(a’—2%) and v==2.

. . _[a=2 ., [ ade [ adx
Aud [yt - do= [y o e - ey
therefore, by addition,

42]«/(a’—-w’)dx=a:«/(a’—z’) +a’fm:ii—af*5 )

a-2') a . =z

therefore ] V(@' -2 dz= W(@=D) P in

2 2 a*
do
Ex. (2). fm .

Art. 9.
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Assume 4/(2*+ a") =2z —2, therefore o'=z"— 2z,
dax -z
&z s
da 1 dx dz
- =log {z+ V(=" +2)}.
dz N
Ex. (3). f:/—(?_—a,)'.
As in Ex. (2), we may shew that the result is
log {z+(a"—a")}.

Ex. (4). fv(x' + o) da.

fV(z’+a')d;v=zV(x'+a’)~fv~(§—iw—T) by Ast. 12.

., ' +a Jf dx
Also f V(@ +a’) do= f WIEEr Lk f«/(x*w*)” f J@Ta)’
therefore, by addition,

2fx/(a:’+a') dz =2/ (& + a”) +a’f;/—(%‘;§;

therofore [/ (e?+a") do= W@+ D) L 2 log (o + 4 (& + )

Similarly fV(w’—a’) dz= ﬂ’(_z;_ﬂ - —2-log &+ v (@*—a?)}.
o
Ex. (9)- fm-
f_dw__=1_f da
Vatbztod)  ¥el ‘/(t_z = w,)
i c- ¢

ey
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Putting w+—b—=z, our integral becomes, by (2) and (3),
. «/clog{2w+b+2~/c~/(a+bw+w')},
where we omit the constant quantity — 7o log 2¢.
" In asimilar manner, by assuming z=a=+2%we may make

f\/(a+ba:+c§:')dx depend upon Ex. (4).
Ex. (6). fm‘%ﬂ)'
=] ﬁz__z.
‘s/cf«/{4ac+b' x_%)’}‘

dac+¥
4c’

comes 7e f =)’ which gives ;c gin™ 2 72 0%

' Put #* for 2% and z for a:— —, then the integral be-

— sin"‘ —-———-2“_6, .
ye v (4ac +b%)

In a similar manner, by assuming z = — 2—% we may make
f«/(a +bx — ca*) dz depend upon Ex. (1).

dx
Ex. (7). fmo
Put a;=-1-, thenf de 1 dz
Yy

vl P e
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- dy -_._..l.f d =—-gin"a
IV -a%) a 1 - Y
@
=—-l-sin"2.
a x
Since sin“§+ cos"g=%' , & constant, we may also write

our last result thus,

f dx _1 _La

@) a " 7
dx

Ex.(8‘). fm;;i—x,).

By putting a:=l, as in Ex, (7), we deduce for the
required result

1 —
a ga+:\/(a +a')’

Ex. (9). f@—j_‘lla)-, and [ 2

& 1 1
f(z—a)"_-m-l (x—a)™*’

f;d—_f; =log (z—a).

These are obvious if we differentiate the right-hand
members.

Ex. lQ. f z,‘ixa,.
wa“i”a’=2_15 (zla—:;::-a)dz

1 [ de 1 ([ dx

“%)z—a 2alz+a
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1. 1
_%]og (x—a) ~3a log (z + a)

=LlgZ=2
=2 %zra’
. zT—@ ..  .L.T—G .
This supposes _—— positive; if pograpd be negative, we

must write
f dx ——}—lo a—2a
Z—a 2% 8otz

dx
Ex (1), [

f dx 1 dx
atbzt+ed ¢ b\ dac—b*"
(‘“’ %) T
If 4“16, ¥ be negative, we obtain the integral by Ex. (10),
namely A
1 Io 2cz + b — 4/ (b* — 4ac)
V& —4ac) " 2z + b+ (B —4ac)
— 2
If 4“1 7 2 be positive, then by Art. 9, the integral is
2 L 2e+b
V(4ac—?b%) V(dac—-0*)"
Az + B
Ex. (12). m‘ 3 -
Ab Ab
4z+B __fA“%’fB“Ezdx
a+brtex’ a+bx+cx’
_A[.2cx+b Ab dx
T 2 a+bz+c:v'dz+ (B-%)fa+bz+m=" *

The former integral is -;,% log (@ + b2 + ca*), and the latter
has been found in Ex. (11).
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dx
Ex. (19) [m
f cos  d dz fo=si
cos:c —fl—z” g=mnz,

cos’x

= §loglif , by Ex. (10),
- l+sma: x
%1 nw lgcot(——g).

Similarly s—f:—w = log tan =
dz d.c
Ex. (14). fa+b cosa:"andfa+b sinz "

f dx =f dz
a+bcosz a(sm =+ cos' >+b(cos——sm’w)

2 2

¢ ]
sec 2cla:

a+b+(a—b) tan'-";

dz . x
=“’fm’ ife=tang.
Hence, if a be greater than b, the integral is

2, Led@=b) 2 L V- ”)"""“‘.
V@) B Jla¥b) TV@—H " )
and if @ be léss than b,

1 log zy/(b—a)++(b+a)
V(' —a") zd(b a)—AN(d+a)’

v(b—-a) t'mg-l-«/(b+a)

1
or 5 log .
VO=8) " p—a) tn T — (B +0)
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To find = assume z = §+ z; thus the integral

a+bsinz .
becomes __d2__ , which has just been found. Or we may
Ja+bcosz
proceed thus,
e )
a+bsine . Z ,37) . &,
a(sm g teos's +2b sin 5'cos =
22 7.
_ sec 2d.z:
(4 x
a(l+tan'-§)+2btan§
2 " . . x
=2 [ M=t

Put y=2+ %, and the integral becomes

2 f dy .
“yr1- ;_Z'
and this can be found as before.

In any of these examples, since we have found the tn-
definite_integral, we can immediately ascertain the definite
integral between any assigned limits. For example, since

f;—/zafi—a’) =log {z + /(" + a%)},

therefore
f' ﬁ% =log [2a+v{(2a)' + 4] —log {a + ¥/(a" + a%)}
=lo 2+45
81 va’

15. The integral [z™* (a+bm")gda: can be found imme-
»
diately if Lisa positive integer, for (a+ 52")¢ can then be

expanded by the binomial theorem in a finite series of powers
of , and each term of the product of this series by =™ will
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be immediately integrable. There are also two other cases in
which the integral can be found immediately.

For assume a+bst=1;
1 ’ 1
H -1 4 \w 2}
therefore = (t'_;_a) , ‘g- = g:T(f-z—g) .

» ' 2 de
Hence fz"’"(a+ba:")cdm =fa:""(a+ba:')' % dt
24
=4 7—a\*
e (5
If ’—: be a positive integer we can expand (#—a Tin
a finite series of powers of ¢, and each term of the product
of this series by #'" will be immediately integrable.
. ? ”—fﬂ—l »?
Again, fa:"“(a+bm")'d‘v= z? " (ax™+0)7dz;
and by the former case, if we put az™+b=1¢, this is im-
mediately integrable if
ﬂ.‘ 4+m
i

-n
be a positive integer; that is, if g +§ be a negative integer.
In the first case, if ’—3 were a negative integer the integrt;l
might still be found, as we shall see in the next chapter, and
similarly, in the second case, if — + £ were a positive integer:

n
but as in these cases some further re£1¢tions are necessarty, we
do not say that the expressions are immediately integrable.

Ex. (1). fz'(a+z)idm.
T, I.C. 2
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Here % =3: assume a+x=1¢; the integral becomes

2 f (f—a)"¢ds or 2 f (A= 2af'+a') db,

gf_Effﬁ%
775 T8’

which gives

thus fw’(a+m)5da: 2(a+x );{(a-i-a:) 2a( ,+z)+ ’}

Ex. (2). f__-—
® o (1+4%)}
o 1
Here m=—1, n=2, q‘=—§;
| o mop_
therefore | v - +q— 1,
Assume z?+1="t
‘ 1
_therefore 2= 1
dx t
and vk ——(t’—l)‘.
dx

Ao fw’(1+z'>*"fw‘( v

Substitute for & and = their values, and this becomes — f dt,

which =—¢ or —ﬁ/(—m’a;—*'—lz.
' dz
Ex. (3). .
. @ f(a’+w’)"
Here m=1, n=2, Z___

2’

-
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therefore Z”,.}.E;..l,
. n.q
Assume adrt+1=4,
therefore z‘=—%—,
dze_ at
di (t’ nHt’
1 (dt 1
.[(a.;.z')lf +1) —-;’f—t’__:ﬁ
a~/(a’+z')
EXAMPLES
_13+2a:
e
2. floga:dz a:(loga,-—l)
3.

-

fﬂsin0d0=—ﬂcosoh+sin0. )
B f”e_,=tan*(é=). '
6. N/m+w dz \/(m+a:')+mlog{«/m+4/(m+z)}

This may be found by putting = =2*
1. fa:tan"a:dfv 1-*-“;“ta.n'1 -}m.

8. f(l cosw)’dw::———fzsm +BID2”~

19

1 1 } ’ \“
n+1 0gm—n+l * .
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©

10.

11.

12,

13.

14.

15.

1

17.

18.

oo

19.

©

20.

21.

. J'a:+sina:

o

EXAMPLES OF INTEGRATION.

1 1
A—ap " 1-z 2({-a)"
o dz ==—l—-lo a’+a
- 6 Ba—2°

f¢(2ax

r—a
T

a .
—F) gty

fma%=—~/(2aw—x')+avers"§..

dz
1+cosx
x+sine

dz = log (z + sin z),

®
1+ooszd“—mtan_2—'

Jeteear=" G tog
z (].ng).— (ﬂ — 1) (loga; kg
fb_g@dxaogw.lo‘g(logw)-bg%

faﬁj‘g"_ﬁ a; zd(ﬁ: l)+i}log{z+v(z‘-1)},

2dv__ o w—1) {(111—)3+%(z—1)'+w}.

V(@=1)
€ asin (m+n) x— (m+n) cos (m+n)x

fe sinmzcosnxdr=— 2

a’+ (m+n)
+e asin (m — n)a: (m —n) cos (m — n)w
2 . @'+ (m—n)*

fe"cos’wdm= }fe"‘ (cos 3z + 3 cos x) da

=%(i ¢] ﬁnaz_msz)*_‘%l_;_ (sinx—éos:v).
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2. f V@2 da=TT

B. [ V(az—a?) do=T2.

~
24, f vers' = do = wa.

o a

Proceed thus; let vers™ = 0, therefore =a (1— cosf),
a .
and the integral becomes f "afsin 6 d4.
o

a3

25. j a:ve.rs"xda: i’—r—q-

4
26. Fz’ve _,a:(h_llvra

o1, f sin'0 cos®0 dO = 7.

28. _d:v___ log tan (a: + ”) .

sinz+cosz 42 8
dx
29. .[wq/(a+b:v+c:v')

Put == -1- and this becomes a known form.

30 4/(1 i __sin"'z (I—a:’)*_i__loga:
) - 3 62 3 °
This may be obtained by putting gin~'z = 4.
31 (:lf;,a);dw=0tan0+logoosﬂ, where sin 0 = 2,

cot

32

(wt0+ 8) where = a cos §.

’ f(,, Y

sinfzder _(fa+b\d _ Watanz =z
33. fa+bcos’a:‘—(ab’ tan NCEY IR




36.

37.

38.

o]

39.

41.

42.

% : S
45, fﬁb-?—d—z. Assume a+ bz"=2".

EXAMPLES OF INTEGRATION.

G+bﬂ3‘ a 3

fw‘:,/(a+b:v')¢h ( t ?E) (a+ b)Y,

f dz  _ (2&"—1)J( 1+a:')

x «/(l+w') 37°

[mamgds= T [tan""OdB

fl W - ”
=2n—_1""2n—_3+.....,—(—1) z+ (—1)*6,

« being = tan 6. -

Shew thatf sin m sin ne de andf cosma:cosm:dx
are zero if m and n are unequal tntegers, and = "'é if
m and n are equal integers.

8 ] ] 3

f {108 (g)} dz=a:{log (9)}—3::: {logf}+6a:log‘—” — 6z.
a:"z(;t+2’)dx g' Btanﬂ log cos 6, where cot 0 ==.
2a+ 2 2a y/(a—x)

f“+z\/(a+:c)dz V=) - Va+z) °

[vers"?-’

4 &
o= % =3 (ven"2).

j:'1+ixeosm=«/‘(11— ) cos¢, if ¢ is less than 1.

F' ¢?cos’0dl =75 (¢ + 7).
~ir

(@*—1)dz - .1
fz“T(H' By Asume =z
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CHAPTER IIL
RATIONAL FRACTIONS.

16. 'WE proceed to the integration of such expressions as
A 4+ Bz + O ...+ M'z™ '
. 4+ Bx+ Co'...+ Nz *

where 4, B,...4’, B,...are constants, so that both numerator
and denominator are finite rational functions of z. If m be
equal to n, or greater than n, we may by division reduce the
yreoeding to the form of an integral function of «, and a
raction in which the numerator is of lower dimensions in
than the denominator. As the integral function of & can be
integrated immediately, we may confine ‘ourselves to the case
of a fraction having its numerator at least one dimension
lower than its denominator. In order to effect the integration
we resolve the fraction into a series of more simple fractions
called partial fractions, the possibility of which we proceed to
demonstrate.

Let g; be a; rational fraction in its lowest terms which is

to be resolved into a series of partial fractions; suppose V a
function of z of the n™ degree, and U a function of = of
the (n —1)® degree at most; we may without loss of gene-
rality. suppose the coefficient of z* in {'to be unity. Suppose

V=(z—a)(z—0b)"(z*— 20z + &’ + ) (" — 29z + 4* + &°)*,
so that the equation V=0 has '

(1) one real root =a,

(2)  equal real roots, each =,
- (3) a pair of imaginary roots a + 8 4/(—1), )
-(4) & pairs of imaginary roots, each being ¢+ 84/(~1).
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By the theory of equations ¥ must be the product of factors
of the form we have supposed, the factors being more or fewer
in number. Since ¥ is of the n* degree we have

1+r+24+28=n.

Assume
U_ A B B B, B,
7—z—a+(z_lb—)'+(z_;,)m+(m_b)7_, ...... +m—-——_b
+ Cx+D
«—2ax+a'+ 8
PR 2 Eg +F, . Ex+F,

@2yt + 8 T F—tym i+ P 2yz ot &

where 4, B, B,,...C, D, E,... are constants which, in order
to justify our assumption, we must shew can be so determined
as to make the second member of the above equation tdent:-
cally equal to the first, If we bring all the partial fractions
to a common denominator and add them together, we have ¥V
for that common denominator, and for the numerator a func-
tion of z of the (n —1)*® degree. If we equate the coefficients
of the different powers of = in this numerator with the cor-
responding coefficients in U, we shall have n equations of the
Jirst degree to determine the n quantities A, B,, B,,... and with
these values of 4, B, B,,... the second member of the above
equation becomes tdentically equal to the first, and thus —g

is decomposed into a series of partial fractions.
If V involves other single factors like z—a, each such

factor will give rise to a fraction like

, and any repeated

z—a
factor like ( — )" will give rise to a series of partial fractions
of the form @ —'b)" (w-—;; —» &c. In like manner other
factors of the form 2 — 2ax + o’ + B or (2" — 29z + o* + &)*
will give rise to a fraction or a series of fractions respectively
of the forms indicated above. ‘

17. The demonstration given in Art. 16 is not very satis-
factory, since we have not proved that the n equations of the
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first degree which we use to determine 4, B, B,,... are tndé-
pendent and consistent,

A method of greater rigour has been given in a treatise on
the Integral Calculus by Mr Homersham Cox, which we will
here briefly indicate. Suppose F(z) to contain the factor
« — a repeated n times; we have, if

Fz) = (z—a)"¥ (),
_$() $ (a)

0@ __ ¢ 2O 3@¥@ ya

F@)~G=av@E G-arv@® w-o

Now ¢ (z)— ¢—(‘3—1[r (x) vanishes when 2 =a, and is there-

fore divisible by = —a ; suppose the quotient denoted by x (<),

then
$@)__ x@) 4@ 1
F@) (@-a) ¥ (@) V() (z-a)

The process may now be repeated on @%7 , and
thus by successive operations the decomposition o F—:)—
completely effected. In this proof a may be either a real
root or an imaginary root of the equation F () =0; if
a=a+B+/(—1), then a—B4/(—1) will also be a root of -
F(x)=0; let b denote this root, then if we add the two
partial fractions '

$(@) 1 $(®) 1
- ] d -
¥ E=ar ¥ O @5
we shall obtain a result free from 4/(—1).

18. With res%::: to the integration of these partial frac-
tions we refer to mples (9) and (12) of Art. 14 for all
Lo+ M

= and this will-be given

the forms except

hereafter.

" Having proved that a rational fraction can be decomposed
in the manner assumed in Art. 16, we may make use of

@—2yz+o +
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different al braical artifices in order to diminish the labour
of determmm%lA B, B, &c. The most useful consideration
18, that since the nnmerator of the proposed fraction is tdenti-
cally equal to the numerator formed by adding together the
partial ions, if we assign any value to the variable = the
equality still subsists.

19. To determine the partial fraction corresponding to a
single faotor of the first degree.

Suppose ‘ﬁ—(—; represents a fraction to be decomposed
and let F'(x) contain the factor « —a once; assume

¢ () _ x (@)
Fla) o= a+1’,(x) .................... (1),

‘where 4 is a constant, and x( z) represents the sum of all

¥ (@)
the partial fractions exclusive of

From (1)

5+ 20d Flz) =(z—a) ¥ (2)-

¢ (x) =AY (@) + (@=a) X (2)erresnrrrensnns @).
In (2), which holds for any value of z, make = =a, then
¢ (a) = 4y (a),

therefore | \t E:;

Since F'(x) =4 (z) + (z —a) ¥ (x), we have
F'(a) = (a),

theref&re o A= ;’,,(((3)

20. To determine the partial fractions corresponding to a
Jactor of the first degree whzc)ch 1s repeated.

se F (z) containg a factor #—a repeated n times
and letll)g =(z—a)* ¥ (z). Assume "
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¢ @ @ _ 4, + 4, =+ 4 ... 4.
F@) @-a" @—a) @&-a
where X ——(—) denotes the sum of the pa.rtlal fractions arising
from the other factors, of F (z). Multl{;ly both sides of the
equation by (z—a)" and put f(z) for ‘;,( y (x —a)*; thus

flx)=A4+A4,(z—a)+4, (xz—a)...+ 4,(x—a)"" + % (a: a)"

Differentiate successively both members of this identity
and put = a afler differentiation ; then

fla)=4,
- f, (u’) = An
S (@) =1.24,,
S (@)=|34,,
7 (e =[n—14..
Thus 4,, 4,,... 4, are determined.

21.. To determine the partial fractions corresponding to a
pair of tmaginary roots which do not recur.

Let £ ; denote the fraction to be decomposed and

at B (— 1) a pair of imaginary roots; then if we denote
these roots by a and b and proceed as in Art. 19, we have
for the partial fractions

$@ 1 190 1
F(a) z—a F' ) «

Suppose 1?,((0 )) =A—By/(—1); then since - ;,((b)) mayvbe

obtained from ;((a)) by changing the sign of 4/(—1), we

must have ;;,((I;)) =A+By(—1). Hence the fractions are
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A-By(=1) . A+By(-1) .
z—a—By(—1)  z—a+BN(-1)’

and their sum is

24 (x —a) + 2BB
(x—a)+p
22. Or we may proceed thus. Suppose «* —px + g to
denote the quadratic factor which gives rise to the pair of
imaginary roots @ + 84/ (—1); then assume
¢$@__Le+M | x()
F@) @—pztq ¥(@)’
so that F'(z) = (2’ — pz + ¢) ¥ (). Multiply by F (z); thus

@=L+ M) ¥ (@) + (@ —pz+q) X ()-eereree- (1).

Now ascribe to z either of the values which makes
@' — px + g vanish ; then (1) reduces to

¢ @) = (L + M) Y (@) erererrrrerernenes @).

Now by the repeated substitution of px— ¢ for «* in both
members of (2), we shall at last have z occurring in the first’
power only, so that the equation takes the form

Now put for z its value a+ B4/ (— 1) and equate the co-
efficients of the impossible parts ; thus '

P= P and therefore also Q= Q.

Here Pand Q are known quantities, and P and @’ involve
the unknown quantities L and M to the first power only, so
that we have two equations of the first degree for finding L
and M. o :

28, To determine the partial fractions corresponding to a
Ppair of imaginary roots whick 1s repeated. o
~ We may proceed as in Art. 20. Or we may adopt the

following method, Suppose o' —pz+¢ to be the quadratic
factor which occurs r times; assume :



DECOMPOSITION OF RATIONAL FRACTIONS. 29
¢@_Lz+M L z+M, L+ M  x()
Fx) (d—pztg)  (@—patg)™ " o—prtq ¥ ()’
so that F(x) = (a— pa -+ ¢)" ¥ (). Multiply by F (2); thus
¢ (z) = (Lz+ M) ¥ () + (L., 2+ M, ) (&'~ pz+ g) ¥(z)

Now ascribe to z either of the values which makes
o* — pz + ¢ vanish ; thus the equation reduces to

¢ (@) = (Lz + M,) ¥ (2).
Proceed as in Art. 22, and thus find Z, and M,. Then
from (1) by transposition we have
$(@) - (Lz+M) (@) =(L_z+ M, ) (&~ pr+q) ¥(@)+...
The right-hand member has o’ —pz+ ¢ for a factor of
every term ; hence as the two members are identical we can

divide by this factor. Let ¢,(x) indicate the quotient ob-
tained on the left; then

$,(@) = (Lo@+ M ) ¥ (2) + (L2 + M, ) (@ —po+q) ¥ (@)
e + (@ —pr+g)7 X (T)eerrrnnnnnns (2).
From (2) we find L, and M,  as before ; then by trans-
position and division
$(@)=(L, 2+ M) ¥(@)+ (L 2+ M, ) (@~ pztq) ¥ () +...
and so on until all the quantities are determined.

2~ 3x-2

Frat ) G Assume it

24. Take for example

equal to
Lp+M,  Lz+M, x(@@) .
@+z+1) "+l (z+1)*

then #*—32—2= Lz + M) (x+1)* |
+(Lg+ M) (@ +z+1) @+ 1) + (@ +2 + 1) (@)eeeees (1)



30 DECOMPOSITION OF RATIONAL FRACTIONS,

Suppose #* + # +1=0; thus the equation reduces to
@—%2—2=(Lxg+ M) (z+1)

_ = (Lx+ M) (" + 22+ 1).

Put —z —1 for &*; thus
—tz-3=Lag+M)z=La"+ Mz

=L+ 1)+ Mz
therefore —4=—-L+ M, and -3=—L;
thus L,=3, and M, =—1. '

From (1) by transposition
‘2 —3x—2— (3z—1) (z+ 1)
=L+ M) (@ +x+1) (z+1)"+ (& +z+1)"x (2).

' The left-hand member is — 82— 4a® — 4z — 1;, divide by
a2+ x+1; thus . v

. —Br+1)=(La+ M) (z+1)+ (@ +2+1) x @)......(2),
Again, suppose '+ +1=0; thus
—3z—1=(Laz+M) (@ +2x+1)=(Lx+ M)z
' ==L, (z+1)+ Mz; '
therefore =~ —3=—L + M, and —1==1L;
thus . L,=1 and M,=-2. '
Thus the partial fractions corresponding to the quadratic

factar are found. The partial fractions corresponding to the

factor (#+1)' may then be found by Art. 20. Or we may

from (2) by transposition and division by #*+ #+1 obtain
v —([@-1)=x ().

Thus ‘ .

x@ = z—1 — z+1 + 2 __ 1 '+"‘ 2

@+ (@+1)  (@+1) (z+1) z+1 (@+1)¥

therefore - '

?—3r—2 _ éx—l + rz—2 + 2 _ 1»3
@+atl)' (@+1) (@+e+l)’ | P2+l | (@+1) 2+l




.DECOMPOSITION OF RATIONAL FRACTIONS, 31

52°+1

25. Examples. Required the integral of Pt
By division we have

52+ 1 35x —29
P—3x+2 =5o+15+ 2 @ —3zx+2"

35z—29 4 T B |
'—3x+2 -1 x—2’°
therefore 85x—29=A (x—2)+ B(z—1).
‘Make 2 successively equal to 1 and 2 ; then
85-29=—A, or A=—6,
70—-29= B, or B= 41

Assume

52°+1 41
therefore m—-5 +15—'—-—1+z 2,
52° 4+ 1 52" ;
‘ therefore mdx =< +162—6 log (z—1) +41log (z—2).
9z*+ 9 — 128
Reqmred the mfegral of W
Since 2*— 52"+ 3z +9 = (z —3)* (x + 1), we assume
92* 4+ 9 — 128 A B; B,

Z—50+3x+9 x+1 (m— 3)’+a: 3’
therefore 92+ 92— 128 = 4 (2~ 3)*+ B,(x+1) + B, (x+1) (z—3).

+

Make =3 and — 1 successively, and we find
'Bl = — 5’ .A. = - 8.
Also by equating the coefficients of *, we have

.. . 9=4+B,
therefore . B,=11;
therefore

927' + 9z — 128

. : . 5. .
. m#-—sm (@+1) tros TV log (z— 3).
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41

Reqmred the integml of (;—_IW—-I'-—I.)-'

z'+1
Assume EESVIEES)

_ 4 y| 4 4 B  Ce+D
—(a:—ll)‘+(a:—’1)’+(x—‘l)’+a:—-‘l Py R iy

therefore o™+ 1={4,+ 4, (x—1)+ 4, (z—1)+ 4, (z—1)*} («"+1)
+{B ('—z+1)+ (Cz+ D) (z+1)} (—1)"...(1).
Put z=1, then 2=24, cioerrniirniirenninienne 2);
therefore 4,=1,
From (1) and (2) we have by subtraction,
P—1=4 (1) +{4,+ 4, (z—1)+ A4, (x—1)"} (z—1) («*+1)
+[B@—2+1)+ (Cz+D) (z+1)} (z—1)"

Divide by’ — 1, then
z+l=A4 (+z+1)+{4,+4,(x-1)+4,(x—1)"} (*+1)
+ {B(z"~z+1) +(Co+D)(x+1)} (—1)...(3).
Putz=1,then - 2=34 +24, ccceceurvrceencnans 4);
therefore 4,=-1%.
From (3) and (4), by subtraction, -
z—1=A4 (" +x—2)+4,(1)+{4,+4,(z—1)} (z—1) (&*+1)
| +{B(@—z+1) +(Co+D) (@+1)} (z—1)",
Divide by -1, then
1=A4,(z+2)+ 4, (@+z+1)+{4,+ 4, (z-1)} (z*+1)
+{B(@*—=z+1)+ (Ce+ D) (z+1)} (z—1)..(5).
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Put z=1,then 1=384,+ 34,+ 24,............... (6);
therefore A,=-1
From (5) and (6), by subtraction,
0=A4, (x—1)+4,(+2—2)+4,(@ —1) + 4, (z—1) (@+1)
+{B@—z+1) + (Cz+ D) (@ +1)} (@—1)"
Divide by z— 1, then '
0=A4,+4,(x+2) + 4, (@ +z+1)+ 4, (2+1)

+{B@@*'—z+1)+ (Cz+ D)(x+1)} (x—1),...... ().
Put =1, then 0=4, +34,+34,+24,............ (8);
therefore A,=3.

From (7) and (8), by subtraction,
0=4,(z—1)+4,(@"+z—-2) +4,(2*—1)
+{B(@*—2z+1)+ (Cz+D) (z+1)} (x-1).
Divide by —1, then
0=4,+4,(x+2)+ 4, +z+1)

+B(@—z+1)+(Cz+ D) (z+1).ceuueeee (9).
Put z=—1, then
0=A4,+ 4,4+ A, +3B..cccceurvrrrennnne. (10);
therefore B=+4.

From (9) and (10), by subtraction, -
0=A4,(z+1)+4, (' + )+ B (@ —2—2) + (Cx + D) (z+1).

Divide by z + 1, then
0=A4,+ Az +B(x—2) + Cz+ D............ (11).
Put =0, then ' .
A, —2B+D=0..cccrvuurrrrrenunnes (12);
therefore' D=4, |

T.I C. 3
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From (11) and (12), by subtraction,

. A, 4+B+C=0;
therefore C=-%;
therefore Z+1 =1 __ 1 1
(=1 +1) (z—1)" 2(@@—1)° 4(z—1)*
5 1 2x—1 .
tee—0) t2U@r]) 3@—2t])’
(@ +1) do 1 1, 1
therfore [ SR 3(w—1)"’ e 7t iE-1)

2 log (x—1) + 35 log (x+1) -3 log (@—z+1).
26 We w1ll give a8 addmonal examples the integration of

Py supposing m and n positive integers, and m —1 less

than n.
Required the integral of —‘f

m-1
l bl
By the theory of equations the real roots of 2 —1=0 are
1 and — 1, and the imaginary roots are found from the expres-

% being supposed even.

sion cos 78 + 4/ (— 1) sin 70, where = ; , and r takes in suc-
cession the values 2, 4,...up ton—2. Now by Art. 19 if

;E ; be the fraction to be decomposed, the partial fraction

correspondmg to the root a is ;’,—,((l) —l—a In the present case -
a) a* o™ a™ .
-%%=’Tﬂ =l =’ since a"=1.

Hence corresponding to the root 1 we have the partial '

. 1 : .
fraction A m=D)’ and corresponding to the root — 1 we have

n (@
the partial fraction (=1) And corresponding to the pair

n(z+1)”
of roots
cos 78 £ 4/(~1) sinrf

|
|
|
|
|
|

|
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we have

{cos 78 + /(— 1) sin rf}™ {cos rf — 4/(—1) 8in r6}™
n{z—cosrf—/(—1)sinrb} * n{z—cosrf +4(—1) sinrf}’

that 18

cos mrf + 4/(— 1) sin mrf .08 mrf) — »/(— 1) sin mré
n{x—cosrf —+/(—1)sinr6} " n {@—cosrf + 4/(—1)sin r6} ’

2 cos mr (x — cos rf) — 2 sin mrf sin r6
n (2’ — 2z cosrf + 1)

a1 (-1)"

*-1 n(@x—1) n(z+1)

that is

Thus

+g s cos mrf (x — cos r8) — sin mr0 sin rf
n (x—cosr6)* +sin* r0 ?

where 3, indicates a sum to be formed by giving to r all the
even integral values from 2 to » — 2 inclusive, " Hence

™ dr 1 _ (=)™, .
1 =R -1+ log(z+1)

1 . p S _, —cosrf
+ 3 cosmrf log (2*—2x cosrf+1)— — % sinmrf tan 0

) 1
27. Required the integral of z_"w;_l , n being supposed
odd. <

The real root of 2" —1=0 is"1, and the imaginary roots
are found from the expression cosrf + 4/(—1) sinr8, where

0= 7;", and r takes in succession the values 2, 4, ... up to
n—1. Hence as before we shall find

" 'dx 1 1
z.—_l—=,—.log(a:—l)+;Ecosmr810g(z'—ezoosr0+1)
24 . L x—Ccosrd
—;}'.Bmertan ol "

3—2
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28. Required the integral of a:""l , n being supposed

even.
The equation z*+1=0 has now no real root ; the i 1mag1na

roots are found from the expression cos r@ i §(—1) sin
where 6 = ; , and r takes in succession the values 1, 3, ... up
ton—1. And if a be a root of z* +1=0, we have

¢(a) _ ™! _ a _ ™

thus the sum of the two fractions corresponding to a pair of
- imaginary roots is

2 cos mrd (z — cos r6) —sin mrf sin r0

n (@ —cos r8)* + sin®rf
Hence
a;;."-'-ila_: =- -1-2 cos mr log (&8 — 2z cos rf + 1)
+= 2 % sinmr tan _,?_cos_ﬁ
sin 76

where 2, indicates a sum to be formed by giving to r all the
odd integral values from 1 to » — 1 inclusive.

m—1

29. Required the integral of " being supposed

odd.
The real root of 2"4+1=0 is in this case —1, and the imagi-
nary roots are found from the expression cos 78 + 4/(—1) sin 8,

where 0 = ;—rand r takes in succession the values 1, 3, ... up
ton—2. Hence we shall obtain

e (1)
+1

log (z + 1)

_1 ~ 3 cosmr0 log ('~ 22 cos rf+ 1)+ ~ 3, sin mrd tan "m,f:oro

\
|
|
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EXAMPLES. \
f __l (z—=1)" __l_tan_,2a:+1
-1 E B rz+1 3 V3
e —1 z—2\1
2. P oy da: w-i-log( )
z*dx *
3. m=—2-—7:c+64log(z.+4)—27log(z+3).
dx 1 % at+x
4 a -zt 2a,tan T lga_z-
22" — 3a* 5, a4z 1 z—a
5. z‘_a‘—dz 2—atan ;—Elogw—-i_a.
_1, izl 22241
6. f(z’+1)(z'+x+1)'—§l°g Z+1 +~/3tsm V3
a',’d:c 1 J2 4%
@ —1 —z+1
8. a;——"+z’+1‘h='}1°ga:’—+ i
9. Z‘—3$+3 (i’t a:+logz 2

[CEDICED)

(Bz—1)dz_1

5 4
10. P e v loga:+§log(z—2)—glog(x.;.l).

. 1 z+b b, L=z
11. f(z’+a’) @+b) F+a {l°g v@+rata ;}'

12. fw logz— = lOg (l+z) —— lOg (1+21')
- .—.- tm"‘



38 EXAMPLES.

1

1. f(z-l):zz’z‘+1)’=_4(z—1)"‘}l°g(z'l)
+itan"w—na;—+-l—)—+{»log(z’+l).
14 f(1+w)(lid2mz)'(l+z')=§1+12a:"§l°g(1+"°)
— oo log (14 @)+ 2¢ log (1 +22) + 5 tan 2.
15. o dx 1 (:c’—m4/2+1

Fr1 iv2 BFravz+1
+ﬁ{m-'(z~/2+1)+tan-'(z«/2-1)}.
16. wii';%=%1og(z‘-z'+1)-%1og(z'+1)
+ g ltan™ (2 = ) — tan™ 2+ 43)).
dy
T
dz
S+ 2) W1+ 3+ 32"

17. Assume 1-—3=y""

18

Assume y'=l—:_’é.
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CHAPTER III.

FORMULZE OF REDUCTION. !

30. LET a+ bz be denoted by X; by integration by
parts we have

Xz (2™ ,dX
[rxraa == ~[Zpxm s
=X;“" _.l;’;l fm"‘"“X""ck: .......... (V).

The equation (1) is called a formula of reduction; by
means of it we make the integral of #™*X? depend on that
of 2***X*?, In the same way the latter integral can be
made to depend on that of #™*'X**; and thus, if p be an
integer we may proceed until we arrive at ™™ X**, that
is 2™ which is immédiately integrable.

From (1), by transposition,
on;.- - 7., =" X* _ m f P
Jerrxian 2528 - s [ xrde,

Change m into m —n and p into p+1; thus
X m—n
bn(p+1) br(p+1)

This formula may be used when we wish to make the
integral of 2™ X* depend upon another in which the exponent

of z is diminished and that of X increased. For example,
if m=38, n=2, and p=—§, we have

dde @ +1j‘ dx
@+o?)  bW@+bod) " bIN(a+ba)’

fr'xrdw—_- [or—xrda. o).
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The latter integral has already been determined, and thus
the proposed integration is accomplished.

Since [+ X7ds = [z @+t dm
=a f X" dr+ b f 21 X dz,
we have by (1)
ZX7_bnp fz’”"‘X’“‘dz —a fz""X"‘ dz+b J'z-*ﬂxr'dx,
& .

am

therefore [ X7t de =T " 2O ID) [y g,

Change p into p + 1, and we have

Change m into m — n and transpose, then

’ X" (m—n)a v
f:u"’Xdz-b(m+"p) el s SO

‘We have already obtained from (1) by transposition

”b—X f X
n;

f S el

also f 2 Xtdr=a f X dz+ b f X

therefore f X = f f a:‘".X’da:,

therefore fz""X’da:= ﬁ.,. anp

m+np  m+np

fa:""‘X""da: ....... (5).

Change p into p + 1 and transpose; thus

"X mtnptaf .
XM= _ /4 1y pH
f dz an(p+1)+an(p+l) FOXTd ().
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31. If an example is proposed to which one of the pre-
ceding formule is applica Ele, we may either quote that
particular formula or may obtain the reqmred result inde-

pendently. Thus, suppose we requn'e f T a?) ; we have

x™ dﬁl(c, a") -1
V(- :a')“'f o .
=—~/(o=—z'>xﬂ+(m—l)fw“w(c’—w’)dw
V(=2 4 (m— 1)f——"")"’T)d”.
By transposition,

(1+m-1)fvg:f"’ —V(E— a:')w""+(m 1)cf‘/(:d‘”
therefore
e __aY(E-a) m=1)E [ ade
Ve m T om =W

This result agrees with the equation (4) of the preceding
article if we make a=¢", b=—1, n=2, p=—4, and change
m into m + 1.

Again, suppose we require f—,‘/(;df_ﬁ,) . We have
dz av@+2) 1 ..
V@ +2) ~ de o™

«/(a‘-:a:')_H +])f‘\/(2“-l:’a"

U3 S

By tx:anspositlon,.
«/(a + o)

-
('"+l)f"fzf'*v(a'+z')" ”‘fa:w(a o)’
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N

and by changing m into m — 2 we obtain

f dz v(a® + o) f
SN@E+D)  (m-1) @z (m— 1)’ .l:"‘"«/(a +27)
T T @).
Another example is furnished by f m, which may
2™z

be written Tea=a)’ if in equation (4) of the preceding

article we make b=—1, n=1, p=—1}, and change a and m
into 2a and m + } respectlvely, we have

ede  2'W(ax—2a") a@m-—1) [ 2™ dx
V@az -2 m L— N (2ax — )
cevereeeeans @),

which of course may be found independently.

32. In equation (lf) of Art. 30 put a=c", m=1, n=2,
b=1, and p=—r;t

4 _ z + 2r—3 dx

(a:’+c’ TT2r=1) @+ 20r=1)d) (@ +)

This formula will serve.to reduce the form -

(Az + B) dz
(*—2az+a*+ 8"’
which occurs in Art. 18; for this last expression may be
written thus,
A (z—a)de
[+ (a+ By [

that is
A

~56 -1 o et B [ m.a) ¥

By putting 2 — a = 2/, we have

J -fe
(i
and thus the above formula becomes applicable.
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33. These formule of reduction are most usefal when the

integral has to be taken between certain limits. Suppose
¢ (@), x (x), ¥ (=), functions of =, such that

[¢ @ dz=x (@ +[¥ (@) da,

then  [$@da=x®)—x(@) +[" ¥ @) do
as is obvmus from Art 3. °

For example, it may be shewn that

JemshaetCoth s o o

suppose g- a positive quantity, then = (c’—a:’)’, vanishes both
when =0 and when z=c. Hence
¢ '_ : t) "1
f (¢~ =) 'h_n+1 (°’ 2)
pa.rt'fhe followmg is a similar example. By integration by

o a-omae=-1=

“) a1 fa:"“(l — o) da.

1 —
Henee [ 2(1-o)de=""1

fld'*(l—w)“dz

Thus if r be an integer we may reduce the integral to

f (1 — z)™*dz, that is to ; hence
-ty (r-—l) (r—2) ...... 3.2.1
‘foz""(l—a:) dm_n(n+l) (n+2)...... n+r-1)°

34. The integration of trigonometrical functions is faci-
litated by formule of reduction. Let ¢ (sin z, cos =) denote
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any function of siaz and cos &; then if we put sin z =z, we
have

fcﬁ (sin =, cos:c)da:=f¢ {2, V(1 — 2"} é_d:dz

- d
= f¢ {2, V(1 —29) ﬁ ........ ().
For example, let ¢ (sin «, cos z) = sin® = cos*z; then
fsin’ z cos'zdr= fz; (1 =2 z......... 2).

If in the six formule of Art. 30 we put a=1, b=—1,
n=2, p=4%(¢—1), we have

[ —egpenae

= ™ (1 —Z’)“ﬂ'l) +g _lfz..ﬂ(l - z’)“r’)lk
m m

(1) m—2

2" (1 — Ko dg

g+1 q+1
_=q .::f)mﬂ) +m+i+ lfz"‘" (1—2)ids

(1= m—2
m+q—1 m+qg—1
(=S g—1
m+q—1 m+q—1
__2" (1—z’)“’*"+m+q+l
B g+1 g+1

If we put m=p + 1, and z =sin «, the first of the above
equations becomes

201 — )N e

2 (1— )0y

(L= s,

sin?zcos™x  ¢g-—1
‘ rp+1 p+1
and similarly the other five equations may be expressed.

f sin® z cos! wdx = f sin”*z cos™*z dxz,
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85. The following is a very important case :

fsin' xdx =_[d(;>:a: sin"'zdx

=-—coszsin""z+ (n— 1) |cos’z sin"*zdz

=—coszsin"'z + (n—1) f (1 —sin’z) sin**zda.
Transposing, we have

n f sin"zdz =—cos z sin" "z + (n — 1) [sin"*zdz;

. coszsin" 'z = — .
therefore f sin“edr=— + - 1 sin**zdz.

n

From the last equation we deduce

- n—1[
sin zdx=T sin**zdz.
[]

°

. . =, n—3 ¥,
Similarly f sin"?zdr = Py sin"* zda.
° —“Jo

Proceeding thus, if » be an ¢ven integer we shall arrive

r
atf dz or }; if n be an odd integer we shall arrive at
o .

-
f sin zdx, which is unity. Hence, if » be an integer,
[

LA (n—1) (n—38) (n—35) ...... 1

fo sin” zdz = n(n—2) (n—4)...... 2 ; (n even),
LA n—1)(n—38)(n—25)...... 2

f, sin® s = n-2 (-1 .....3 (°dd).

These two results hold if we change sin « into cos , as
will be found on investigation.

36. From the recedin% results we may deduce an im-
portant theorem, called Wallis’s. Formula. '
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Suppose n even ; then

W, . n—1n-3 n—5 31 x
fo snteds=""12"2 20 2 lT ..,
P n—2 n—4 n—6 2
fo sin' a:da:-n_l ey Loy SR g e (2).

i
Now it is obvious that f sin"*adr is less than
i S
j sin*?zdx and greater than f sin"xzdx; because each

element of the first integral is less than the corresponding
element of the second mteiml and greater than the corre-
spondin ti element of the third integral. And it has been

shewn
i
f sin" zdz
o _n-—1
= =
f sin*™* zda "
. . [
sin”® zdz a1
Therefore <{—————is less than 1 and greater than .
f sin*™ xdx
[

Hence the ratio of the r1¥ht-ha.nd member of (1) to the
right-hand member of (2) is Iess than unity and greater than
Z‘—;‘—l thus

zr_>2.2.4.4.6.6 ...... (n—2) (n—2)
2°1.8.3.5.5.7.0.(n—3) (n—1)"
2.2.4.4.6.6......(n—2) (n—2) =
<1 3 3.5.5.7 . (n=8) (1) n=1"
EXAMPLES.

fios afan=2lEt 2 ot s i
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[z‘4(2ax—:d') de=—
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2™ (2az — o)}
m+2
a (2m + l)f " _
+ pra " N/ (2az :c’)da:

fw(zaa: ~ ) de=—} (202 — o)} + o[y (202 — %) do.

rzq/ 2aa:-a:’) d:c— —

fmw(m—w*) do=~7 (@aa—2+ 3 [oy/(200—o) .

[oveaw-a=2r.
[[viea—a) as=T2.
: fa:" (oga)"da
[ (togayt = —'—+— {(log o) =
[utea-

[* 2* A (@ — )
. Vata)

$

_a™ aogm)

n+1

n+

o-)s

-z i fx‘ (log )™ da.

log +(n+1)} '

fsin’e cos’0 df = — 1 cos*6 + } cos®d.

db
3 fsi'n‘a cos'd

sin’ 6d0

-8in 8

cos’d

2 cos’

g+ ilog

—siné
l+sm8

3 (tan 6 — cot 6) + § (tan’6 — cot*6).
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15. [ (cos20)t cos 86 = 3’“/(2) .
Assume #/(2) sin § =sin ¢.

16. fv(a—x')co-'“’ (1+"'£)9£.

17. f' (vers"g)dx=(1r’—4) a.

* sintx do A1 .
18. ﬁch?:osz: ~Llog (14+0)+ 257

19. If ¢(n)= f (1 4 ccos x)™ dx, shew that

(n—1) (1 —=c") ¢ (n) =—ceinz (1 + ccosz)™
+(2-3)¢ (n—1) — (n—2) § (n—2).

20. ]V(2az o) vers d.z_”_;?.

21, a:V(2aa:—a:') vers"-zdz=i§’+"%’:,

2. ftanx)’cb:— ~3loge.

23. f~/(l csm_)_“{l"'(’})'“”’( )c +(;i‘2) .. }
¢ being < 1.

24, Let P=As"+ B2+ 0 +..., V,,,.=fz"P"d§;,
a=m+1+na, B=m+ 1+ nd, y=m+1+nc...
Then
~Vn~—AVMLI+BVM-1+ OV-&#-—1+
P =a AVpauy+ BBV p oy, +YCVmpuy + ..

(Car)nbrzdge and Dublin Mathematical Journal, Vol. 111, p.
1 242
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CHAPTER IV.

MISCELLANEOUS REMARKS.

37. WE have at the beginning of this book defined the
tntegral of ¢ () between assigned limits a and b as the limit
of a certain sum 3¢ (x) Az, and have denoted this limit by

f ¢ (x) dr. 'We have shewn that this limit is known as soon

as we know the function 4 (z) of which ¢ () is the differen-
tial coefficient. In the pages immediately following we gave
methods for finding 4 (z) in different cases. We shall now
add some miscellaneous remarks and theorems, some of which
will recall the attention of the student to the process of sum-
~mation which we placed at the foundation of the subject.

38. Suppose we wish to find the integral of sin 2 between
limits a and b ¢mmediately from the definition. By Art. 4 we
have to find the limit when = is infinite of

k[sin a + sin (a + &) + sin (a + 2R)...... +sin {a+ (n—1) A}],
where & =1 (5 a). |

It is known from Trigonometry that this series
b—a 7;) . b—a
— -8l

boin (a+ 222 4)sin " sin (a+

_ 2 2 2 —3/"" 3
) siné - sin ~
2 , 2

T.I1. C. 4
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The Yimit of Lh when # is infinite and therefore & zero is
s Bin §

2; hence the required integral is
b+a . b—a

2 smT sm—2— =cos @ — co8 b.

39. Required the limit when » is made infinite of the
series

:+ 1+ s +

14n +n 3‘+n

This series may be written

it .1 .1 N 1

- T 3 T eeecee ﬁ;

Ve T Y
n n n, n

. 1 .
putting A for —, we obtain

1 1 1 1
h {' tiretirey o v s 1)'1;'} '
Comparing this with Art 4 we see that the required limit is
what we denote byf a2 Nowfl+w' =tan™ z; hence

Z is the réquired limit,

40. We define f ¢ (z) dz as the limit when = is infi-
nite of ’
ho(a@)+ho(z)...... +h, ¢ (2,,)-

Now let 4 and B be the greatest and least values which
?(:c) htakes between the limits o and &; then the series is.
ess than

(hy+ kgt vevers +h) 4,



MISCELLANEOUS REMARKS. 51

and is greater than

that is, the series lies between
(b—a)4 and (b—a)B.

The limit must therefore be equal to (b — a) C, where C is
some quantity lying between 4 and B; but since ¢ (z) is
supposed continuous, it must, while = ranges from a to 3,

ass through every value between 4 and B, and must there-
}:)re be equal to C when = has some value between a and .
Tl:lns C=¢ {a+0 (b —a)}, where 6 is some proper fraction,
an,

f:¢ (@) de=(6—a)  [a+0 (B—a)}.

Similarly if 4 (x) Tetains the same sign while = lies be-
tween @ and b, we may prove that

[$@+@de=sa+06-a} [ v@ .
41. The truth of the equation
j:¢ (@) do=[' () do+ f’¢ (@) devenennens W

will appear immediately ; for suppose 4~ () to be the integral
of ¢ (z), then we have on the left-hand side °

¥ (6)— ¥ (a),
and on the right hand

YO —¥(@+¥0 -

In like manner the equation

f:¢ O IOLem— @
is obviously true. 'We may shew also that
f:¢ (@) dz = fo¢ (@=2)d2 errerrrrnnn, 3).
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For putting a — =z we have
[$a-a)dz=-[g (),
therefore [:¢(a-z)dx=—f°¢(z)dz

=[ ¢ ds, by -

-Of course f b (z) de = f ¢ (z) dz, since it is indifferent whe-

‘ther we use the symbol z or 2z in obtaining a result which
does not involve z or z.

We have from (1)
f’¢ (@) da{=f'¢ x)éz+f"¢ () dz.
The second mtegra.l by changing  into 2a — «, will be
found equal to
[$@a-a)d or f°¢ (2 —2) dz.
Hence

f’¢<z>dw=f{¢(m>+¥(2a¥z)}dm.

Hence, if ¢ (x) =¢ (2a—2) for all values of z comprised
between 0 and a, we have -

f., ¢ (z) dz = 2f:¢ (@) &2 erverrrrrercnns @,
and if ¢ (2a — ) =— ¢ (z), we have
f:“qb S 5).

For example, :

f. in*0d0 =2 f ...... by (4),
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and f'cos'0d0=0 ...... by (5). °
°

42. Such equations as those just given should receive
careful attention from the student, and he should not leave
them until he recognizes their obvious and self-evident truth.

f "c0s* 00 is by definition the limit when n is infinite of the
series

k {cos® & + cos® 2k + cos® 3h ...... +cos®(n—1) &},
where nk =m. Now ‘ '
cos’h =—cos’ (n—1) A, cos’ 2k =—cos® (n—2)A......;

thus the positive terms of the series just balance the negative
terms and leave zero as the result.

- r -
In the same way the truth of ["sin'fdf =2/ sin'0df

follows tmmediately from the definition of integratior:, and the
fact that the sine of an angle is equal to the sine of the sup-
plemental angle.

43. Suppose b greater than ¢ and ¢ () always positive
between the limits @ and & of z; then every term in the

b
series 3¢ (z) Az is positive, and hence the limit j ¢ (z) de
must be a positive quantity. ‘

44. All the statements which have been made suppose
that the function which is to be integrated is always finite
between the limits of integration; for it must be remem-
bered that this condition was expressly introduced in the
fundamental proposition, Art. 2. If therefore the function
to be integrated becomes infinite between the limits of inte-
gration, the rules of integration cannot be applied; at least
the case must be specially examined. - .

45. Consider f .Wid?—_av); the value of this integral ‘is:

2-24/(1-a). Here the function to be integrated becomes:
infinite when #=1; but the expression 2—24/(1—a) is
finite when a=1. Hence in this case we may wri
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54
' dx
[ Ji-2) =2, provided that we regard this as an abbrevia-

tion of the following statement : « f _d= is always finite
oV (l - )

if a be any quantity less than unity, and by taking a suffi-
ciently near to unity, we can make the value of the integral
differ as little as we please from 2.”

46. Next take f “l—ili-' the value of this inteé’fal is

- ?
—log (1 — a), which increases indefinitely as a approaches to
unity. Hence in this case we may write {=p=% Ppro-

vided that we regard this as an abbreviation of the following

a
statement: f lt_i‘_vz
unity, and by t:;king a sufficiently near to unity we can make
the integral greater than any assigned quantity.”

increases indefinitely as a approaches to

47. Next consider f (l—i.%)"; the integral here is - 11
If without remarking that the function to be integrated be-
comes infinite when 2 =1, we propose to find the value of the
integral between the limits 0 and 2, we obtain —1—1, that is
—2. Baut this is obviously false, for in this case every term
of the series indicated by 2 ¢ (z) Az is ?ositive, and therefore

. . dx * dx

the limit cannot be negative. In fact / i—ap and f =
are both infinite. This example shews that the ;)rdinary
rules for integrating between assigned limits cannot be used
when the function to be integrated becomes infinite between
those limits.

-

48. In the fundamental investigation in Art. 2, of the
b
value of f ¢ (x) dz, the limits ¢ and & are supposed to be

[}
Jinite as well as the function ¢ (x). But we shall often find it
convenient to suppase one or both of the limits infinite, as we
will now indicate by examples.
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Consuler .[1+ 5; the integral is tan™z. Henoef
=tan a; the larger a becomes, the nearer tan™a approaches

2 , and by taking a sufficiently large, we can make tan™a

differ as little as we please from 12r’

dx T . L.
r Tr2=3 as an abbreviation of this statement.

hence we may write

Similarly f ——=log (1+a); and by taking a large

enough we can make log (14 a) greater than any assigned
quantity, Hence for abbreviation we may write \

Tz

o 1+
49. Suppose the function ¢(z) to become infinite once
between the limits @ and &, namely, when z=c. We cannot

. b .
then apply the ordinary rules of integration to / ¢(z)dz; but
a
we may apply those rules to

[Ts@as+[ p@ds

for any assigned value of s however small. The limit of the
last expression when g is diminished mdeﬁmtely is called by

Cauchy the principal value of the mtegral f o (z) de.

For example, let () =c_:c;

)
ad = ]
etpf—& e+n® —
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hence the principal value is log g_’—‘_a —log b ; ¢

, that is
log%—:—: .

de . . @

50. The value‘of L/(a"—-z-") is sin™ —; hence

f ) :/(_a% =gin™ (1) — sin™ (- 1).

Students are sometimes doubtful respecting the value which
is to be assigned to sin™ (1) and to sin™ (—1) in such a result
as the above. Suppose we assume x=a sin 8; thus the integral

becomes |df or &. Now z increases from —a to a, hence

the limits assigned to § must be such as correspond to this
range of values of zz When z=—a then  may have any

value contained in the formula (4n—1) ;, where n is any

integer. Suppose we take the value (4n — 1) ;—r, where n is
some definite integer, then corresponding to the value z =a
we must take 0= (4n—1) ’-;+7r ; this will be obvious on

examination, because z is to change from —a to + a, so that
it continually tncreases and only once passes through the value
gero. .

dz
Hence L _\/(T——F) =T,
As this point is frequently found to be difficult by begin-
ners we will consider another example.

. 2
Suppose we require M .
o a +tan’d
sec’0df 1 tan™ tan 6 H) .
a'+ tan*6  a ( a )’

and as the integral is to be taken between the limits 0 and ,

‘We have
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we must determine the values of tan™ (% in these cases.

Suppose 0, 6,,6,, 6,, ... 6,, m, to be a series of quantities in
ord‘:n of magnitude. = By the nature of integration
- L} (] [ r
[(uao=["udo + [“udt-+ ["uib+ ... + [ uds.
° 0 _91 0 [

Now each of the integrals on the right-hand side can be
made as small as we please by increasing n and making two
consecutive quantities as 6, and 0,,, to differ as little as we

please. Hence we see that the symbol tan™ (t%:__ﬂ) must be

8o taken that tan™ (‘&fﬂ)_mﬂ (9:;—0) shall diminish

indefinitely when 0,,, — 6, does so.

Therefore tan™ (ta_z_«?) must increase continuously with 6,

and it can only pass once through an odd multiple of 32-r while
0 passes from 0 to w. If then we take mar for the value of
tan™ (ti:—a) when =0, we must take (m + 1) 7 for the value
when 6 =7 ; and thus the value of the integral between the
assigned limits is = .

A common mistake with beginners is to take the second
value the same as the first, instead of taking the second value

to exceed the first by 7; thus the value of the proposed inte-
gral is made to be zero, which contradicts Art. 43.

(a—ccos 8) db
a*+c—2accos0°
(a—ccos@)dd 1 a*—c }
@+c—2accosf  2a {l+a’+c’—2acco50 0.

do
—2accos 8’

Again, suppose we require f )
[}

: oy . w a-=c'("
Thustherequuedmtegralmg—a+—2a—[‘a.+ca
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do
Now _[a"+c’—2accos 0
sec’ § 6 d6 2 a+tc
f(a-c)'+(a+c)’tan Y i ( “““)
When taken between the assigned limits this gives pe e c‘ 2
if a is greater than c, and—%c, 3 if @ i8 less than c.

Hence the value of the proposed integral is % if @ is greater
than ¢, and zero if @ is less than c. :

51. Required f hlog sin z dz.
o
By equation (3) of Art. 41,
T ‘. iw s i
lo de=| logsin(—~— dz=f log cos z dz.
[o g sinx fo og sin (2 ) ] g
Hence, putting y for the required integral,
ir
2y = f (log sin z + log cos z) da

= f - log (sin'z cos z) das

_ ir log sin 22 des
Jo 2 .

ir
= f {log sin 22 —log 2} dx
_ 1
=f log sin 2z do — 3 o log 2.
o
But putting 2z = «', we have
ir - ) )y
f log sin 2z dx = 1}/ log sin &’ dx
o [

= ] hlog sin z dx, by equation (4) of Art. 41;
°
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m
therefore Wy=y-3 log 2,
therefore cy=T log % .

Again, f & logsin0df = f (w—6)*log sin @ db, by equa-
tion (3) of Art. 41; therefore

0= ["(* — 2m6) Log sin 8.5,
[ ]
therefore f'ologsinodo=i’-’f'1og sin#df=Tlog .
°

Required / logi(i+.a=) dz. Putz=tany, and the intggra.l

becomes f log (1+tany) dy; but by equation (3) of Art. 41
[

fflog (1 +tany) dy=f:log {l+tan (g - )} dy, |

tanu 2
l+tany l+tany

and 1+tan(§—y)— +

therefore 2f‘]og(l+tany)dy=;log2;

log (14 ) o
therefore / Ti7 dz_glog&
See Cambridge Mathematical Jowrnal, Vol. 111. p. 168.
52. The remainder after n+ 1 terms of the expansion

of ¢ (a+2) in 1poweris of A, may be expressed by a definite
integral. For

Flo)=¢(x—2)+2¢' (a:-z)+E¢"(:c ) +§¢-(z_z).
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Differentiate with respect to 2, then
Fl=-T¢™ @1,

Integrate both members of this equation between the limits
Oand %; thus

F()-FO)=- f £ 4™ (@ —2) ds,
that is,

S@—h)+h¢ (z— h)+L¢"(:c B, hlz» ¢ (z—h)—(a)

=0 f . 2"p*™ (x — 2) dz.
Put a+ % for  and transpose, then

$(a+h) = (a)+hd (a) + l’f;w(a) ...... + ’lgdf‘(a)
+ l%fz‘#" (a+h —2)dz.

Thus the excess of ¢ (a + %) over the sum of the first n+1
terms of its expansion by Taylor’s Theorem is expressed by
the definite integral

[ f ‘z‘tﬁ'" (a+ k& —z2)da.

By means of the first result in Art. 40, we may put for
this definite integral
?%_4,-“( +4— OR),

where 6 is a proper fraction.

By means of the second result in Art. 40, we may put for
dy ﬁmbe integral

B h = OR) ] £*ds,
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or

hﬂl

where 6, is also a proper fraction.
53. Bernoulli's Series. By integration by parts we have
6@ dz=24 (@)~ [24 (@) d,
o4 @a=% $(0)-[% ¢' @) &,
[24 @ ds=L 9 0) - [2 9 s

oooooooooooooooooooooooooooooooooooooooooooooo

Thus f¢(:c)d.’c 2 (@) - {58 @ + 54" @
+ (_ l):-l .¢-—1( ( 1) "¢'(a:) de.
Therefore,
£¢(z)dx=a¢(a)-l“f2 ' éw’(a) ......
(—l)hla'.¢.-‘ ((l) (—1). »an
AT W2 H e

This series on the right hand is called Bernoulli’s series. In
some cases this process might be of use in obtaining f ¢ () dz;

for example, if ¢ () be any rational algebraical fanction of
the (n—1)" degree, ¢"(x) is zero; or it might happen that

fz ¢"(x) dz could be found more easily than [4: (x) dz. Or
again, we may require only an approximate value of
f ¢ (z)dr and the integral f “z"¢' (x) dx might be small
enough to be neglected. ’
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54. By adopting different methods of integrating a func-
tion, we may apparently sometimes arrive at different results.
But we know (Dif. Ca;; Art. 102) that two functions which
have the same differential coefficient can only differ by a
constant, so that any two results which we obtain must either
be idenfical or differ by a constant. Take for example

o +8) @z +5) dz;
integrate by parts, thus we obtain

(022 D) o+ 8) - [ (o + 81",

(az+ B! (@2 + ) _dlam+by

that is, Sa e

If we integrate by parts in another way, we can obtain
(@2 +b)" (ax+b) a(az+d)

2a’ 6a™
Hence
(az + B)* {3a (a'z + &) — o (az + b)}
’ 6a*
and (a'z+b) {3a (a.:‘;ll-'b)-—a(am+b)}

can only differ by a constant. Hence multiplying by 6a%a”
we have
a” (az + b)* (3a (d'z + b') — o’ (az + b)}

—a* (a2 +b) (3d (az + B)—a (am +3)) = G,
where C is some constant. This might of course be verified

by common reduction. We may easily determine the value
of C; for since it is independent of # we may suppose

ax+b=0, that is, z=— = then the left-hand member
becomes (ab’ — a'd)’, which is consequently the value of C.
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Similarly from
f(azv+b)da:+f(a'z+b’)dx=f{(a+,a')a=+b+b’}¢h-

we infer
(az+8)*  (dz+¥) [(a+d)z+b+0)
ot e 2@t d) + constant.

Multii)ly by 2aa’ (a +a’) and then determine the constant by
supposing = 0; thus we optain the identity

d(a+d) (ax+d)+a(a+a)(az+0) .
=ad' {(a+a)x+b+b)+ (ba' - ba).

55. By f ¢ (z) dz we indicaté the function of which ¢ (z)

is the differential coefficient; suppose this to be 4 (). Then
we may require the function of which +r () is the differential

coefficient, which we denote by f ¥ (z) dz, or by f f ¢ (z) dr de,

and so on. For example, the integral of & is %e’“+ C,
where C, is a constant; the integral of this is
1

kﬁeh+cllz+oa;
the integral of this is
1 o2 |
2 +01’2_+ Osz"' Cu

where % being still a constant may be denoted for simplicity

by B if we please. Proceeding thus we should find as the
result of integrating ¢ successively for n times

el::
7 H4AT+ 4 e 4, 2+ 4,

where 4,, 4,,......4, are constants.
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It is easy to express a repeated integral in terms of
simple integrals. For let u be any function of z ; let

u‘=fud:v; let u, = |u,dz; let u, = [u,dx;
and so on.

By integration by parts we have
u,=fu,dz=mu,—f %dx=mfudm—fa:udz;
u,; u,dz=f{zfuda:— :vud:c}d:c;
therefore by integration by parts,
' u,=§-' ud.v—fa-;udx—xfwudz+fz'udx
=§fudz—m]zud.v+%fa:’u&v.

The general formula is

l.!'uu;=m‘fudz—m:"' zude + "(:;1) m"’fx’udz-— ......

n(n— 1)...£n—9'+ D) oo [ruds 4 ...

...... + (1) fa:“udz.

The truth of this formula may be easily established by
induction ; for if we differentiate both sides we obtain a similar
formula with » —1 in place of n.
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MISCELLANEOUS EXAMPLES.

f«’( e 5'”“. (Assume z = a sin*#6).

|} vy e

S (-9

dx T
o @+ T+ 2ba+d)”

If ¢ () = ¢ (a + ), shew that

[ s@de=n[ ¢ @

Shew that.L’¢(w)dz=b2-;af_:¢ (b;-a+b2-;a:c) dx.

2 sin xdx 'n"

Troors= (Change zinto w—2'.)

Shew that f

(3
Shew that ./; * (2az —af)}t vers“gda: = 3:;“ .
(Change « into 2a — «'.)
Find the limit when = is infinite of

1 1 1
CR RS VY s

__r
Vin'—(n—1)"}"
Result. ’—2'

T.I. G 5
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10.

11.

12.

13.

14.

MISCELLANEOUS EXAMPLES,

Find the limit when = is infinite of

1y 72\ 3\ .
() * (55) + (5i) + -+ to 20 torms

1 1\ 1 2V 1 3
(+am) *@*am) + G+ 2)+ ton terms

Result. —(11—),-“-

! 2

L
Find the Limit when n is infinite of {';-’3}

Result. %. (Take the logarithm of the expression.)
Shew that f : log tan & dz = 0.
0 v

Shew that J’i sinz log sin a:da: =10g 2-1.

If f(x) be posmve and finite from 2 =a to z= a+c,
shew how to find the limit of - ‘

. on=17\1k
{ f(@ f(a +2) oo f(a +2 c)} |
when  is mﬁmte and prove that the limit in ques-

tion is less than - F f(«) dz, assuming that the geo-

metric mean of a ﬁmte number of &osmve quantities
which are not all equal is Jess than the arithmetic.

Hence prove that er is less than f e"dzx, unless u
be constant from =0 to z=1.

A
¢
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15. The value of the definite integral f "log (1+n cos* @) d6

. o . -
may be foand whatever positive value is given to n
from the formula

f: log (1+ 1 c08'6) d8 =T log {(1-+n) (14+n )} (1-+n)}...}

where n, n, ,...... are quantities connected by the
equation

n?
ﬂr_u -‘-—m .

16. Shew that

€™ cos (ax — ¢)

(@*+2)
where ta.n¢=:—‘. Hence shew that if e®cosazx be

f e cos ax dx = + a constant,

integrated n times successively the result is

ﬂqs(a-'c_—‘ﬂ@_i_ C+ Oz + Cat.....t Oz,
(a*+ o

5—~2



CHAPTER V.

DOUBLE INTEGRATION.

56. LET ¢ (x) denote any function of ; then we have
seen that the ntegral of ¢ (x) is a quantity w such that

% $(2). The integral may also be regarded as the limit
of a certain sum (see Arts. 2—6), and hence is derived the
symbol f ¢(x)dz by which the integral is denoted. We
now proceed to extend these conceptions of an integral to
cases where we have more than one independent variable.

57. Suppose we have to find the value of » which satis-
fies the equation _d5L = ¢(, y), where ¢(x, y) is a function

of the independent variables = and y. The equation may be
written

d (d
% (@) = ¢ 9
' a
or 7 =@ 9
ifv=i—:. Thus v must be a function such that if we differ-

entiate it with respect to y, considering 2 as constant, the
result will be ¢ (z, y). We may therefore put

o=[$ (@ 5) ds,

that i, e =Jo @ a.
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Hence » must be such a function that if we differentiate it
with respect to , considering y constant, the result will be
the function denoted by f ¢ (z, y) dy. Hence

w=[1f ¢ @i5) do} da.

The method of obtaining » may be described by saying
that we first integrate ¢ (x, y) with respect to y, and then
integrate the result with respect to z.

" he above expression for ¥ may be more concisely written
us,

[[¢ @9 dydz, o [[$ (@) doay.

On this point of notation writers are not quite uniform; we
shall in the present work adopt the latter form, that is, of the
two bols dx and dy we shall put dy to the right, when we
consisgtg'l the integration with respect to y performed before the
integration with respect to x, and vice versa.

58. 'We might find u by integrating first with respect to
z and then with respect to y; this process would be indicated

by the equation
w=[ ¢ (2, 3) dy .

59. Since we have thus two methods of finding u from the
equation Ed’% =¢(x, y), it will be desirable to investigate if

more than one result can be obtained. Suppose then that u,
and u, are two functions either of which when put for u satis-
fies the given equation, so that

" d*
Zdy=t@y wd Zr=4@y)
We have, by subtraction,

that is,
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~ Now from an equation %=0 we infer that w must be a

constant, that 18, must be a constant so far as relates to z; in
other words, w cannot be a function of @, but may be a func-
tion of any other variable which occurs in the question we are
considering.

: . d (dv . - dv

Thus from the equation o ('d__y) =0 we infer that &
cannot be a function of @, but may be any arbitrary function
of y. Thus we may put :

w
%=/
By integration we deduce
v =ff(y) dy + constant.

Here the constant, as we call it, must not contain y, but
may contain #; we may denote it by x (z). And f fy) dy
we will denote by 4+ (y) ; thus finally

v=9(y) +x ().

Therefore two values of % which ;a.tisfy the equation
i% = ¢ (x, y) can only differ by the sum of two arbitrary
functions, one of = only and the other of y only.

60. We shall now shew the connexion between double
integration and summation. Let ¢ (z, ) be a function of =
and y, which remains finite and continuous so long as « lies
between the fixed values @ and 3, and y between the fixed
- values ¢ and 8. Let a, 2, ,,...... Z,,, b be a series of
quantities in order of magnitude; also let a, y,, Yareeeres Ymgs B
be another series of quantities in order of magnitude. ’

Let &,—a=hk, o,—x, =k,...on... b—a,,=h,;
alsolet gy —a=Fk, 9— 9 =FKyerrrereeB—Ymy =K
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‘We propose now to find the limit of the sam of a certain
series in which every term is of the form

hrka ¢ (wr-op .1/._1);
where r takes all integral values between 1 and n inclusive,
and s takes all integral values between 1and m inclusive; and
ultimately m and » are to be supposed infinite; also @, and
q‘hare to be considered equivalent to @ and a respectively.
us we may take Ak¢ (z, y) as the type of the terms we
wish to sum, or we may tage Az Aye (x, y) as a still more

expgessive symbol. The series then is

k(@ (a, 0) + Kb (3, 3) +Ed (3, 9p)eoreet Bnh (@) Yun)}
+ hl {kl¢ (“”u a) + k.(’) ("vx’ yl) + ks¢ (zv 3/2) """ +k-¢ (xn :'/»—1)}
+ h» {k1¢ (‘”-v a) +.ka ¢ (xn-x’ .’/1) LETIIRIIS +k~ ¢ (m-_n yn-1)}'

Consider one of tﬁe horizontal rows of terms which we
may write

hrsy (e, $(@er @) +Hy® (@0 9) + 5y b (@ 9o oo F o B (@0 Youoi)-

The limit of the series within the brackets when %,, %,,...%,,
are indefinitely diminished is, by Art. 3,

[*6 @y a.

Since this is the limit of the series, we may suppose the
series itself equal to

8
f‘¢ (@, y) By + pria>
where p,,, ultimately vanishes.

Let [ ’6 (2., y) dy be denoted by ¥+(z,); then add all the

horizontal rows and we obtain a result which we may de-

note by S (@) + Zip.

—
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Now diminish indefinitely each term of which % is the type,
then 3/p vanishes, and we have finally

[¥ @
that is, j:{ ['$ @9 dy} .
This is more concisely written
[o['#@ e,

dy being dplaeed to the right of dz because the integration is
performed first with respect to y.

61. We may again remind the student that writers are
not all agreed as to the notation for double integrals. Thus

B
we use f ’ f ¢ (x, y) dedy to imply the following order of
ado '

operations: integrate ¢ (x, y) with respect to y between the
limits a and 8; then integrate the result with respect to =
between the limits @ and . Some writers would denote the

b (B
same order of operations by f . f ¢¢ (, y) dy d.

62. We might have found the limit of the sum in Art. 60
by first taking all the terms in one vertical column, and then
taking all the columns. In this way we should obtain as the

sum f: f:¢' (#, y) dy da; and consequently
[[s@paa=["[ @ da.

63. Hitherto we have integrated both with respect to z
and y between constant limits; in applications of double
integration, however, the limits in the first integration are
often functions of the other variable. Thus, for example, the
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b [¥(z) .
symbol f fx(jcﬁ (@, y) dxdy will denote the following opera-
a z,
tions: first integrate with respect to y considering  constant;
suppose F'(z, y) to be the integral; then by taking the in-
tegral between the assigned limits we have the result

Fiz, ¥ (@)}~ Fla, x (@)}
We have finally to obtain the integral indicated by

[: [Fiz, ¥ (@)} - Flz, x (@)}] d=.

The only difference which is required in the summato
process of Art. 60 is, that the quantities @, y,, ¥+ -Ym_, Wi
not have the same meaning in each horizontal line. In the
(r+ 1) line, for example, that is, in

hfu {kx¢ (@ a) + &y (2, AR X (mﬂ A S kudh (zr, yn-l)}’

we must consider a as standing for y (z,), and y,, ¥,,.+-... as a
series of quantities, such that x (@), ¥, Yueeeer-Ymop ¥ (20),
are in order of magnitude, and that the difference between any
consecutive two ultimately vanishes. Hence, proceeding as

(2,
before, we get f ve ¢ (x,, y) dy for the limit of the sum of the
terms in the (r + 1)® line.

64. It is not necessary to suppose the same number of
terms in all the hoﬁzo:;? rows; for m is ultimately made
indefinitely great, so that we obtain the same expression for
the limit of the (r + 1)™ line whatever may be the number of
terms with which we start.

65. When the limits in the first integration are functions
of the other variable we cannot perform the integrations in a
different order, as in Art. 62, without special investigation to
determine what the limits will then be. This question will
be considered in a subsequent chapter.

66. From the definition of double integration, it follows
that when the limits of both integrations are constant, -

[[6@ ¥ @ dmdy=[$ @) dox [v(s)
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supposing that the limits in f v (y) dy are the same as in the

integration with respect to y in the left-hand member, and the
limits in f ¢ (z) dx the same as in the integration with respect

to z in the left-hand member. For the left-hand member is
the limit of the sum of a series of terms, such as

by § @y Yos)s
and the right-hand member is the limit of the product of

b @)+ @) + Ay (0.t b (@),
and  E () + B (3) + B (9)eenent B ().

67. The reader will now be able to extend the processes
given in this chapter to #riple integrals and to multiple
integrals generally. The symbol

NN

will indicate that the following series of operations must be
erformed : integrate ¢ (z, y, z) with respect to z between the
imits § and & considering = and y constant; next integrate
- the result with respect to y between the limits 5, and #, con-
sidering « constant ; lastly integrate this result with respect
to = between the limits £ and §. Here § and { may be
functions of both = and y; and 7, and 5, may be functions
of . This triple integral is the limit of a certain series
which may be denoted by 2¢ (z, y, 2) Az Ay Az.

MISCELLANEOUS EXAMPLES.
Obtain the following eight integrals.

e i
L = LG y=ab) L
- 3

[ ]

Result,



Result. x+

4.

&

&

b

®
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z*dx
F=a E-t@—a"
a’log(a:—a)+b’log(m—b)+c‘log(as-c).
(@a—bd)(a—c) " (b—a)(b—c) (c—a)(c—b)"

tanzde - R log (cos®z + m® sin’x)
1+ m* tan’z " f. 2 (m*—1)
dz 1
fm. (Put a:—;).
Remlt logw.
jsecwsec2zda:.
1 1442s8inz 1, 1+4sinz
Besult. -A\/—21°gl—~/2sinx—§l9 l—sinz’
tang —tanaz .
ta.na+ta.nz‘h'
Result. sin 2a log sin (e + z) — « cos 2a.
f dx
ot + o +a*’
L+azr+a’ 1 _ xay3
Result. 10g a’,——‘az T ,+ 2a-,73tan a—-,_ 2

(@ — o) dae a _
fw{m’-(a-bz')'}' (Put Z+be=y)

-1 y
Result. cos Vot dab)"

Find the limit when # is infinite of
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10. Shew that

f:z (tan™z)* dor = q_;(o_; - l) + log v/2.

11. Shew that i

f:f:[:"e’*"’da:dydz=eg—¥+e‘—

12. Let.4=ﬂm'czxdy, B=ffwydzdy, 0=ffy'dzdy,

and suppose the limits of the integrations the same in the
three integrals; then prove that 4(C'is greater than B".

| w
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CHAPTER VI.

LENGTHS OF CURVES.

Plane Curves. Rectangular co-ordinates.

68. Let P be any point on the curve 4PQ, and let z,
be its co-ordinates; let s denote the length of the arc
measured from a fixed point 4 up to P;

J.

then (Difi. Cal. Art. 307)
/@)
ol (@

From the equation to the curve we may express % in

terms of z, and thus by integration s becomes known.

69. The process of finding the length of a curve is called
the rectification of the curve, use we may suppose the
question to be this: find a right line equal in length to any
assigned portion of the curve.
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In the preceding article we have shewn that the length of
an arc of a curve will be known if a certain integral can be
obtained. It may ha%fi? in many cases that this integral
cannot be obtained. enever the length of an arc of a
curve can be expressed in terms of one or both of the co-
ordinates of the variable extremity of the arc, the curve is
said to be rectifiable.

70. Application to the Parabola.
The equation to the parabola is y =4/(4az) ; hence

2o /e Eey/o2)

thus s=f¢(f-z—a) da; | (See Ex. 6, p. 19.)

=y(ax+2") +alog ¥z ++(a+2)} + C.

Here C denotes some constant quantity, that is, some quan-
tity which does not depend upon z; its value will depend
upon the position of the fixed point from which the arc ¢ is
measured. If we measure from the vertex then s vanishes
with #; hence to determine C we have

alogya+C=0;
and thus s =4/(az + 2*) + a log W2 + ¥ (a +2)} —a logNa

=4/(aa:+w')+alog"—/ﬁ-://—‘(:—ﬂ.

If then we require the length of the curve measured from
the vertex to the point which has any assigned abscissa, we
have only to put that assigned abscissa for z in the last
expression. ’f')hus, for example, for an extremity of the
latus rectum z=aqa; hence the length of the arc between
the vertex and one extremity of the Jatus rectum is

a2 +alog (144/2).
71. In the preceding article we have found the valae of

“the constant C, but in applyinc% the formula to ascertain the
lengths of assigned portions of ‘curves this is not necessary.
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For suppose it required to find the length of the arc of a

curve measured from the point whose abscissa is z, up to the

point whose abscissa is #,, Letyr (x) denote the integral of
2 - - .

\/ {1 + (%) }, and let s, and s, be the lengths of arcs of the

curve measured from any fixed point up to the points whose
absciss® are #;, and x, respectively, so that s,—s is the
required length ; then

»’=.f\/{l+ (Z—’é)’}d@w(wn c;

hence s=vY(x)+C; s=v(x)+C;
therefore 5, —s8, = (z,) — ¥ (z)-

- Hence to find the required length we have to put , and =,
successively for # in 4 (x) and subtract the first result from
the second. Thus we need not take any notice of the constant
C; in fact our result may be written

weum/f (@)}

72. Application to the Cycloid.

In the cycloid, if the origin be at the vertex and the axis
of y the tangent at-that point, we have (Di{ff. Cal. Art. 358)

-/

therefore 8 =4/(8ax) + c.

*The constant will be zero if we measure the arc s from the
vertex.

Conversely if s = /(8az) + C we infer that the curve is a
cycloid. And more generally if we have ‘

§+A=\/(B+ Clz+ Os‘y)’
where 4, B, C,, and C, are constants, we infer that the curve
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is a cycloid. For by suitable changes in the origin and
axes :Ze last equation can be put in the form

s=/(8az) + C.
78. Application to the Catenary.
The equation to the catenary is y=§. (3§+ e_:',); hence
d A /) e =z
a—i—:%(&‘—e ‘)’ d—;=<}(e°.+g c);
thus 8=%f(6§+e'§)d<c=§(e5-e":")+0.

The constant will be zero if we measure the arc s from the
point for which z=0.

74. Application to the Curve given by the equation

m*-l-y’:ai.
dy__ gt ds_ (gt ot -
Here do= " —_( ) =3
: de 8adz?
. =gt | 22202
thus s=a l 3 + C.

The constant will be zerp if we measure the arc from the
point for which 2 =0. The curve is an hypocycloid in which
the radius of the revolving circle is one-fourth of the radius of

the fixed circle. (See Diff. Cal. Art. 360, and put b= g) .

75. In the same way as the result in Art. 68 is obtained
we may Bhew that

.= f\/ {1 + (%)’} dy.

Or we may derive this result from the former thus;



Wt @/ @) 5
-V @)

From the equation to the curve we may express -gf in

terms of y, and thus by integration s becomes known. In
sAolT.e cases this formula may be more convenient than that in
68.

76. Application to the Logarithmioc Curve.
Theeqnatlontotblscurvem y =ba’, ory=be‘ if we
suppose @ = e’ thusz-clogb,

d_oc ds «/(c‘+y’)
"y dy ¥

_ (V@) fdy ydy
and ’-f y A= fy«/(o’+y’>+f~/(o’+y')'

The latter integral is 4/(c¢*+ 3%) ; the former is

c logc—_*w/(—‘z,_'_ﬁ , (A.rt. 14).
+(+y)+C.

therefore

Hmce 8=clogm

77. If  and y are each functions of a third variable ¢,
we have (Dif. Cal. Art. 307)

/G
-l

78. The equation to the ellipse is % 1. We may
T. L C. 6

@
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therefore assume z=asin¢$, y=>5 cos ¢, 80 that ¢ is the
complement of the excentric angle (Plane Co-ordinate Geo-
metry, Art. 168). Therefore, by the preceding article,

ds_ 2 2 9
-dz—q/(a’cos ¢+ ' sin’ ¢),

nd o= V(a0 +sin’ §) dp=a [V(1 ~ s §) dp.

The exact integral cannot be obtained; we may however
expand #/(1 —e*sin" ¢) in a series, so that '

and each term can be integrated separately. To obtain. the
length of the elliptic quadrant we must integrate between the

umitsomdg.

Plane Curves. Polar Co-ordindtes.

79. Let r, 6 be the polar co-ordinates of any point of
a curve, and s the length of the arc measured from any fixed
point up to this point ; then (Dif. Cal. Art. 811)

A
hence 5= f J {r‘+(%).} 6.

80. Application to the Spiral of Archimedes.
dr

a9 =%
hence o= [ve?+a) d0=af4(1+0’) 8

In this curve r =af, thus

=‘.;_04(1 +6 +§log{0+«7(l + )} + C.

- The constant will be zero if we measure the arc s from the
pole, that is, from the point where § = 0. :
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81. Application to the Cardioide.
The equation to this curve is » =a (1 + cos ) ; thus

5= [V{a? (1-+ c08 6)" + o* sin’ ) de=af4(2 +2cos 6) &0

=2afcosgd0= 4a sin g+ C.

The constant will be zero if we measure the arc s from the
point for which =0, that is, from the point where the curve
crosses the initial line.

The length of that partwof the curve which is comprised
between the initial line and a line through the pole at right

angles to the initial line is dasin 7. »Thé length of half the

perimeter of the curve is 4a sin T, that is, 4a.

82. Suppose we require the length of the complete peri-

meter of the cardioide; we might at first suppose that it
¢ 4

would be equal to 2a j cosg d@; but this would give zero as

the result, which is o‘iwiously inadmissible. The reason of
this may be easily seen; we have in fact shewn that

%=a4(2+2cos€),

and this ought not to be put equal to 2a cos g but to +2a cos g ,

and the proper siﬁn should be determined in any application
of the formula. Now by s we understand a positive quantity,
and we may measure ¢ 80 that it increases with 6, and ‘thus

70 is positive,. Hence when cosg is positive, we take the

-upper sign and put % =2a posg; when cosg i8 negative, we

take the lower gign and put g—;é—.m o8 g ‘Hence the
. 6—2
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length of the complete perimeter is not 2a f" cosgdo, but
o

2 “cos 38— 2" o082 d6, that is, 8a. This result might

have been anticipated, for it will be obvious from the sym-
metry of the figure that the length of the complete perimeter
is double the length of the part which is situated on one side
of the initial line, and this was shewn to be 4a in the preced-
ing article.

83. It may sometimes be more convenient to find the
length of & curve from the formula

2
o &
which follows immediately from that in Art, 79.
84. Application to the Logarithmic Spiral.

The equation to this curve is »=5a’, or r= lu»,‘g if we sup-
pose a=e%; thus 0=olog§; therefore g—g=g and

o= [VA+A) dr =yt r+0.

Thus the le:ﬁh of the portion of the curve which has r,
and 7, for the radii vectores of its extreme points is

ﬁ *V(1+ &) dr, that is, ¥(1+) (r,—r,).

The angle between the radius vector and the co nding
tangent at any point of this curve is constant (Dif. Cal. Art.
354); and if that angle be denoted by a we have ¢ =tan a;

thus /(1 + ¢) =sec a; therefore Z—:=seca, and s=rseca+C.

Hence (r,—r,)seca is the length of the portion mentioned
above.
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Formulee involving the radius vector and perpendicular.

85. Let ¢ boe the angle between the radius vector = of
any point of a curve and the tangent at that point; then

w08 =37 (Dif. Cal. Art. 810). Let p bo the perpendicalar
from the pole on the same tangent; then

ain¢=£, therefore cos4>=3/L:—p—.);
- r
ds r rdr

therefore $=W, and 8= W.

86. Application to the Epicycloid.
With the notation and figure in Dif. Cal, Art. 860, it may

be shewn that the equation to the tangent to the epicycloid
at Pis

coso—coscﬁ—bo

where 2 and y are the co-ordinates of P, and &’ and y the
variable co-ordinates. Hence it will be found that the per-
pendicular p from the origin on the tangent at P is given ie;

p= (a+2b)}sin;—gl;

also P=a+b(a+b) sin'.%g;
thus p’c—’:(;—’_—__a%’)-;whetec=a+2b.

Hence, by Art. 85,

8= V(c';-a’)ﬂ/(;d:f) =— V(c’;a’) 4/(6'—”')+ C.
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At a cuspr=a, and at a vertex r=c¢; thus the length of
the portion of the curve between a cusp and the ad_]acent
vertex is

2
*/(c' @) f e r,)  thatis =2, that is 2@ 1?) (‘;"'b) .
Hence the length of the portion between two consecutive cusps
is 80(a+d)
a

87. A remark may be . made here similar to that in
Art. 82. If we apply the formula

s=_M¢@=_m+o

to find the length between two consecutive cusps, We -arrive
at the result zero, since » =a at both limits. The reason is
that we have used. the formula

ds _y('—a’) r
dr— a NC-7)
while the true formula is :
B N
e VE-r)
Since s may be taken to increase continually, it follows that

pm is positive when r is increasing, and negative when r is
diminishing. Now in passing along the curve from a cusp to

the adjacent vertex » increases, thusgs 18 positive, and we

should take the upper sign in the formula for gs ; then in
passing from the vertex to the next cusp  diminishes, thus
(% is negative, and the lower sign must be taken. Hence the
length from one cusp to the next cusp is
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_N(-d) f‘ rdr. N(c'—a") f' “rdr
a .I;/ . a c’ﬂ/(c’—r')

. ="
_24/(c’—a')f‘ rdr ____8b(a+b)
- a cV(c’—f') a ’

88. From what is stated in the preceding article, it ap-
pears that if the arc s begin at a vertex the proper formula is
ds __N(—a) r
ar a ANCE-7)°

N — d
therefore s=-— (a a’)f,\/(;:,a)

No constant is required since we begin to measure at the
point for which »=c; the formula holds for values of s less

— N/(O'a— a’) V(- ,,:).

than 4b (t; +b) .
It may be observed that thus
d-a
8= P ’5/ (r. _P.)' .
)

89, Similarly for the hypocycloid we may shew that

: 208 __

P,___—c ‘(g_ o’r') , where ¢ = a — 2b.

Suppose ¢* less than a*; then we may shew that
B_ V@-)
&= a4 VrE=o

and thus s may be found. The length of the curve between
86 (a —d) ’
a L]

two adjacent cusps is
Next suppose ¢* greater than ao; then we should write
the value of p thus,

ds |, N(—a") r o
&=t e Je=m’
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in this case b is greater than a, and we shall find the length
of the curve between two adjacent cusps to be %—a).

‘When a=2b we have ¢=0and »p=0; in this case the
hypocycloid becomes a straight line coinciding with a dia~
meter of the fixed circle. C

If a=b we have ¢ =a*; in this case the denominator in
the value of p* vanishes; it will be found that the hypocy-
cloid is then reduced to a point, and r=a.

It may be shewn as in Art. 88, that if s be measured from
a vertex to a point not beyond the adjacent cusp, we have

3=ic’—;-af'\/(”—p')’

the upper or lower sign being taken according as ¢ is greater
or less than a. ‘
Formule involving the Perpendicular and its Inclination,

90. Another method of expressing the length of a curve is
worthy of notice.
[

o

2

Let P be a point in a curve; @, y its co-ordinates, Let s
be the length of the¢ arc measured from a fixed point 4 up
to P. Draw OY a perpendicular from the origin O on the
tangent at P, suppose 3)§=p, PY =u, YOx=0; then
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p=xcosf+yend,
u=x8in 0 —y cos 6,

%=—-cot0, %-:—oosecﬂ;

therefore
dp . de | . dy
d—e——zsm0+yooso+cosoﬁ+§m0do—-—u,
dp_ du_ . . dz dy
w_—do_—wmo—ym0—5m070+cos0‘—i§

Y - 2 ds
==p cosecod—e——p+za,

therefore, by integration,

d,
d—s=—-fpd0+s, .
d,
therefore s=F+ [pao;
this may also be written
a+u=fpd0.

Suppose s, and u, the values of s and « when 6 has the
value 6,, and s, and u, their values when @ has the value 6,, then

(8
s,—s‘+u,—u‘=f‘lpd0.

‘We have measured u in the direction of revolution from P
and have taken it as positive in this case; when u is negative
it will indicate that ¥ is on the other side of P.

The preceding results may be used for different purposes,
among which two may be noticed.

(1) To determine the length of any portion of a curve
when the equation to the curve is given; for from that equa-~

tion together with Z—wy—=—cot0 we can find « and y in terms

of 8, and therefore p which is equal to 2 cos +y sin 6 ; then
s may be found from the equation ‘

s=%+fpd«9.
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(2) To find a curve such that by means of its arc a pro-
posed integral may be represented ; for if the proposed inte-

gral be f pd6, where £ is a function of 6, the required curve is
found by eliminating 6 between the equations

m=pcos€-g%sin0, y=psin0+%coso,

and then the integral may be represented by s — %2 .
This article has been derived from Hymers's Integral Cal-
culus, Art. 136.

91. The results of the preceding article may be obtained
in another way, Let p denort’e the radius of curvature of the

g

curve at P; let OP=v, and let s, 4, and 6 have the same
ineaning as before, then from the Differential Calculus we
ave
ds d d d
P=15 and p=rz;;, therefo;ea—s=r2—:.
P .

Also PY =7 cos 0PY=—rz;
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therefore =0 PY=—~u.

Let PC be the radius of curvature at P; draw O ( perpen-
dicular to PC. The locus of C is the evolute of the curve
AP; and QC is with respect to this locus what PY is with
respect to the locus of P. Let &, p' be the polar co-ordi-
nates of @, and let QC=u'; then

9'=0——;: and p' =u.

Md QOewe_B 8t

Mo pmPQtQO=piv=p+lE,

d
bt therefore s = Zi% + [ pdb.

_ds
P=as’
From the value of PY we can obtain an easy proof of a
theorem of some interest in the Differential Calculus (Dsf.
Cal. Art. 329). Let p, denote the perpendicular from O on
the locus of Y'; then (Dif. Cal. Art. 284)

11 1 (dp\
I,—‘:—_i'l"F(do)’

since p is the radius vector of Y. Thus
1 _1 ¥ p'+d

”
==+ 1 =1—’d;

p PP P

2
therefore 2, =1:7 .
A particular case of the formula .

0
s,—sl+u,—u1= op
h

should be noticed. Suppose we take a complete oval curve

without singular peints; then 6,=6, +;.>1r, and u,=w,; thus
) +2r

the complete perimeter of the curve is fo pdo.

]
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92. Application to the Ellipse.

B

y

c 4
Let APB be a quadrant of an ellipse, CY the periendicu-
lar on the tangent at P; let ACY =0. Then (Plane Co-
ordinate Geometry, Art. 196) CY =a/(1 - ¢é'sin’0) ;

therefore AP+ PY'=a [y(1— ¢ sin’ 6) 6,

the constant to be'added to the integral is suﬂmsed to be so
taken that the integral may vanish with 6. If R be a point

such that its excentric angle is ;—r— 0, we have, by Art. 78,

BR=af¢(1-¢sin'a)do;

thus AP+ PY=BR.uuceererverereneenen. (1).

_ ' dp_aé'sinfcosd

Let z be the abscissa of P; then by Art. 90,
w=poos L sing
ae'sin’fcosd  acosd
N(1—¢'sin*f) (1 —¢'sin*f) "
Thus PY =¢'zsin 0 ; and if z'belthe abscissa of B we have
Z=a eos(%— 0)sothatPY=€?v. Thus (1) may be written

=a y/(1— &'sin*6) cosd +

this result is called Fagnani’s Theorem.
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From the ascertained values of 2 and &/ we have

a'—~d'sin'd ot —of*
1—-éan'fd . ezv’

-

a
therefore ex'a*— o' (2 + ") +a*= 0.

Thus the equation which connects  and 2’ involves these
quantities symmetrically ; hence from (2) we can infer that

&=

BP—AB=-§m’.

This is also obvious from the figure.

'We may observe that the value of PY may be obtained
more simply by means of a known property of the ellipse.
For suppose the normal at P to be drawn meeting C4 in G';
and through P draw a line parallel to C4 meeting CY in Q.
Then PQ = CG = 'z, by the nature of the ellipse; and

PY = PQsin 0 = ¢'wsin 6.
93. Application to the Hyperbola.

Let C be the centre and A the vertex of an hyperbola,
CY the perpendicular on the tangent at P. Let A0Y =4
and CY =p; then it may be proved that

PY-AP=a fv(l-asinw)de.
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This may be proved in the same manner as the corresponding
result of the preceding article; we may either make the
requisite changes of sign in the formule of Art. 90, which
are produced by difference of figure ; or we may begin from the
beginning again in the manner of that article. The constant
to be added to the integral is supposed to be go taken that the
integral may vanish with 6.

Suppose a the greatest value which 6 can have, then
%ne Co-ordinate Geometry, Art. 257) cota = #(e' —1).

en P moves off to an infinite distance PY — AP becomes
the difference between the length of the asymptote from C
and the infinite hyperbolic arc from 4. us this differ-
ence is

a f "V(1 — & sin’ 6) d6,

Inverse questions on the lengths of Curves.

94. In the preceding articles we have shewn how the
length of an arc of a known curve is to be found in terms of
the abscissa of its variable extremity; we will now briefly
notice the inverse problem, to find a curve such that the arc
shall be a given function of the abscissa of its variable ex-
tremity.

Suppose ¢ () the given function; then s= ¢ (=);
therefore ¢ (@) = ‘% — ’\/ {1 + (%)n},
thus Y gy,
and y=[lg @) -1ids.

95. As an example of the preceding method, suppose
¢ () = v/ (4cx) ; thus ¢'(x) = «/ g; therefore
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¢ T, ([(c—2)de
v=[[s-1] =-[0a2s
i ](3‘ )% [
- 4/(0:1:—-?) 2 W (cx — o)
=«/(cz—a.’)+%ver8"“;—m+0.

We may write y' for ga— C and thus we find that the
curve is a cycloid. (Dif. Cal. Art. 358.)

96. For another example suppose ¢ (x) =a logz; thus
$@=-
a' o' — ') do
Hee =)/ (-1
_ J’ adlde [ =zdw
Tlzy(@—a) Jy(a—aP)

=alogm{m,)+\/(a’—z’)+0.

Involutes and :Evolutés.

97. We may express the length of an arc of a curve with-
out integration when we know the equation to the involute of
the curve. Suppose &' to represent the length of an arc of a
curve, p the radius of curvature at that point of the involute
which corresponds to the variable extremity of &', then (D¢f.
Cal. Art. 331) 8’ + p=1, where [ is a constant. If the equa-

‘tion to the involute is known, p can be found in terms of the
co-ordinates of the point in the involute; then these co-ordi-
nates can be expressed in terms of the co-ordinates of the
correspondinﬂ% (})oint of the evolute, and thus s’ is known.
By this method we have to perform the processes of differen-
tiation and algebraical reduction instead of integration.
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98. Application to the Evolute of the Parabola.

Take for the involute the tﬁmb()h which has for its equa-
tion y*=dax; let &/, ¥’ be the co-ordinates of the point of
the evolute which corresponds to the point (2, ) on tﬁg para-~
bola. Then by the ordinary methods (Dif. Cal. Art. 330) we

have
& =243, y=—

and p=2a (“_’tf)*.

4_0"27

@

Thus we shall obtain for the equation to' the evolute
27ay™ =4 (&' — 2a)°; '

and p=2a (w's-:a)i;
therefore s+ 2a (m';; a)*= A

Supgose we measure s' from the point for which o' = 2a,
that is, from the point which corresponds to the vertex of the
parabola ; then we see that s' increases with &', so that we
must take the lower sign in the last equation; also by sup-
posing &' =2a and &' =0 we find /=—2a; thus

' z + a\}

8 -2a(- 3a ) - 2a.

This value of & maay also be obtained by the application of
the ordinary method of integration.

99. When the length of the arc of a curve is known in
terms of the co-ordinates of its variable extremity, the equa~
tion to the involute can be found by ordinary processes of
elimination.

" For we have (Dif. Cal. Art. 331)
&
do_ _ 14
d—z *pdz’
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where the accented letters refer to a point in a curve, and the
unaccented letters to the corresponding point in the involute.
Thus

. . v
 Similarly y=y ;p%, ........................ @).
If then &' is known in terms of 2/, or of ', or of both, by
means of this r(:,lation apd the known equation to the curve
we may find % and Z% ; and p is known from the equation

# Fp=10 It only remains then to eliminate 2’ and 3’ from
(1) and (2) and the known equation to the curve; we obtain
thus an-equation between & and y, which is the required
equation to the involute.

100. Application to the Catenary.
The equation to the catenary is

e % =

y="2'(3°+e:):

e, 2 _Z

and s'=§(e‘—e °),

supposing &' measured from the point for which &’'=0 and
¥y =c; we shall now find the equation to that involute to
the catenary which begins at the point of the curve just
specified.

We have then

I
(]
o

& §&

QYR o=,

B& R

thus

]
LAY

g

and p=4¢', no constant being required, because by supposition
p vanishes with &',

T. I. C. 7
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Hence equations (1) and (2) of the preceding article become

, §&e
r=x -
Yy
: G ] ] 2
=y LY =8 _C
Y=Y~y Ty Ty
4
Al ===y (G- )= 2=
, 8 _
therefore .8_,=.'l/_(_c_3/’);

thus x=a' —+/(c'—3"); therefore &' =W (— 3" +=.

‘We have then to substitute these values of 2’ and 3’ in the
equation to the catenary, and thus obtain the required rela-
tion between z and y. The substitution may be conveniently
performed thus,

, ¢,% _%
y=zl+e);

c, Z _Z
therefore ;\/(‘1/"-'-(;’)-.:5(3« —e %)
z
therefore ¥+ V(Y =) =cer,
U 2
therefore xr=c log- y_+_ch — C’) .

Thus finally, @+ v(c—y) =clogc—+w .

This curve is called the éractory; on account of the radi-
cal, there are two values of « for every value of y less than ¢,
these two values being numerically equal, but of opposite

.signs. There is a cusp at the point for which =0 and
y=c; and the axis of « is an asymptote.

101. The polar formule may also be used in like manner
to determine the involute when the length of an arc of the
evolute can be expressed in terms of the polar co-ordinates of
its variable extremity. We have (Diff. Cal. Art. 332)

P =p = 2ppeceiiniiiiiiinne (1),

Pi=r =P Severerneenne (2).
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Here, as before, the accented letters belong to the known
curve, that is, to the evolute, and the unaccented letters to the
required involute ; thus since the evolute is known, there is a
known relation between p’' and 7. And &' ¥ p=1, so that if
¢ can be expressed in terms of p' and » we may eliminate
' and 7’ by means of (1), (2), and the known relation between
P  and ». Thus we obtain an equation connecting p and 7,
which serves to determine the involute.

102, Application to the Equiangular Spiral.

In this curve p’' =" sin &, where « is the constant angle of
the spiral. If we suppose the involute to begin from the
ole of the spiral, and &' to be measured from that point, we
ave p=3=7r"seca (Art. 84). Thus (1) of the preceding
article becomes
r*=1r"gec’ a2 —2¢¥'pseca
=r"sec’ a + " sin’ a+ p* — 2r'p sec a, by (2).
From this quadratic for p we obtain
p—r seca=+r cosa.

¢ (14 cos’ q)

If we take the upper sign we find p=- cosa "’ and

]
then from (2) we find r’=1—-';cg:~g:—a »®. But this solution

must be rejected, because from it we should find p or
o 2 .
,.é'_'=_ﬁf’i°§_ 7, which is inconsistent with the
dp cosa (l+4cos’a) ‘
equation p=r'sec a.
7' sin’ &
cos a

If we take the lower sign we find p = , and then

. risin‘a . h
from (2) we find »*= coa thus p=rsina. Hence the

involute is an equiangular spiral with the same constant
angle as the evolute has,
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Intrinsic Equation to a Curve.

103. Let s denote the length of an arc of a curve measured
from some fixed point, ¢ the inclination of the tangent at the
variable extremity to the tangent at some fixed point of the
curve; then the equation which determines the relation
between s and ¢ is called the tnérinsic equation to the curve.
In some investigations, especially those relating to involutes
and evolutes, this method of determining a curve is simpler
than the ordinary method of referring the curve to rectangular
axes which are extrinsic lines.

104. We will first shew how the ¢ntrinsic equation may
be obtained from the ordinary equation.

Suppose y =f(z) the equation to a curve, the origin
being a point on the curve, and the axis of y a tangent at that
point; from the given equation we have

d 1 .
Zi% =f (x) = fang by hypothesis ;

thus « is known in terms of tan ¢, say = F'(tan ¢); then

e gy
also %=cosec¢; ’
therefore %=F' (tan ¢) sec® ¢ cosec ¢ ;

from this equation s may be found in terms of ¢ by integra-
tion. A similar result will be obtained if at the origin the
axis of # be the axis which we suppose to coincide with a
tangent.

105. Application to the Cycloid.
By Dif. Cal. Art. 358, we have

%=l\/(2a;w)=ta_%$;'
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2a 1 .
therefore = S amg =2 sin* ¢,

Z—(‘;=4asin¢cos¢,.

ds dx
@=cosec¢%=4aoos¢;
therefore s=4asin¢p+ C.

The constant will be zero if we suppose s measured from
the fixed point where the first tangent 18 drawn, that is, from
the vertex of the curve.

106. Having given the intrinsic equation to deduce the
ordinary equation.

We have % =gin¢;
therefore ‘ z= f ds sin ¢,
Similarly y=[ds cos .

Now s is by supposition known in terms of ¢; thus by
integration we may find  and y in terms of ¢, and then by
eliminating ¢ we obtain the ordinary equation to the curve in
terms of  and y.

107. Application to the Cycloid.

Here s=4asin¢; ‘

thus .a:=fds sin¢=4afsin¢ cos ¢ dp = C —a cos 2¢,

y=fds cos¢=4a[cos‘¢d¢= C'+;..’a¢+a sin 2¢.

Hence by eliminating ¢ we can obtain the ordinary equa-
tion ; if the origin of the rectangular axes is the vertex of
the curve, we shall have C=a and C'=0.
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108. We shall now give some miscellaneous examples of
intrinsic equations.
The intrinsic equation to the circle is obviously s = a¢.
109. The equation to the catenary is
Y+e= % (e:""e—;))
the origin being on the curve. Hence
Ppe-c7), s=Se—c0);

thus if ¢ be the angle which the tangent at any point makes
with the tangent at the origin,

8=c tan ¢.
110. We have seen in Art. 86, that for the epicycloid
&y cosf — cosa;_b
= axh, .~ tan suppose,
sm-—z-—o—smﬂ
_a+2b
Again, from the same article,
==Y oo
_._(GL)cos_._l_G

D ()00

if we suppose s measured from the point for which 8 =0.

- _4b(a+d) ad )
Thus s—-———-—a—<_1—cosa+2b .
‘We may simplify this result by putting
2b
¢= (a+ )+¢, and s= 4b(a+b)+ 3
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this amounts to measuring the arc from a vertex instead of
from a cusp. Thus

,_4b(a+d) . ad
= o
where the accent may now be dropped.

111. Similarly the intrinsic equation to the hypocycloid

may be written
o 4b (a - D) a
a

sma_2b.

112. Tt appears from the last two articles that s =1 sin n¢
represents an epicycloid or hypocycloid, according as n is less
or greater than unity. For example, if

¢ ¢

P S SR SR
s—lsm2, a-—lsms, a—lsm4, a—lsm5,...

. cq s .10 1 3
we have epicycloids in which =3 bz
If s=1Isin2¢, s=1sin3¢, s=1Isind¢p, s=Isin5¢,...

ey s .06 1 1 38 2
we have hypocycloids in whick 2=1' 3§50

2’ XX ]

113. If p be the radius of curvature of the curve at the
point determined by s and ¢, we have (Dif. Cal. Art. 324)

_ds
P—d¢'

In the logarithmic spiral we know that p varies as s if the
arc be measured from the pole; thus

ds
therefore %= 1ds , and therefore by integration

8 do
k¢ + constant =log s;
therefore 8= aa"",
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where a i8 a constant. If we put s =s'+a we have
§=a(*-1),
and now &' is measured from the point for which ¢ =0.

114. If the intrinsic equation to a curve be known, that
to the evolute can be found.

A A

Let AP be acurve, BQ the evolute; let s be the length of
an arc of 4P measured from some fixed point up to P; &' the
length of an arc of BQ measured from some fixed point up
to Q. It is evident that ¢ is the same both for s an(f &, if in
BQ we measure ¢ from B4, which is perpendicular to the
line from which ¢ is measured in 4 P.

In the left-hand figure 8'=p — 0=%— C.
In the right-hand figure s'=C'—p= '~ 52

Thus if s be known in terms of ¢, we can find &' in terms
of ¢. The constant C is equal to the value of p at the
point corresponding to that for which &' =0.

115. For example, in the cycloid s = 4a sin ¢; thus

8'=C—4a cos ¢.
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Put¢=1p-+12rands'=a'+ C; thus

o =4a sin .
This shews that the evolute is an equal cycloid.

116. Similarly if the intrinsic equation to a curve be

known, that to the involute may be found. For by Art. 114

ds ,
‘E=Cis H
therefore o= f (C+5)dp.

Thus if s’ be known in terms of ¢, we can find s in terms

of ¢.
117. For example, in the circle s'=a¢. Thus
. ) a¢' ,
If we suppoée,s to begin where ¢ =0 we have C'=0, and

farther, if s begins whela'e the involute meets the circle we
have C'=0; thus s=“%. (See Diff. Cal. Art,. 333.)

118. It is obvious that by the methods of Arts. 114 and
116 we may find the evolute of the evolute of a curve, or the
involute of the involute of a curve, and so on.

119. The student may exercise himself in tracing curves
from their intrinsic equations; he will find it useful to take
such a curve as the cycloid, the form of which is well known,
and ascertain that the intrinsic equation does lead to that
form ; he may then take some of the epicycloids or hypocy-
cloids given in Art. 112. For further information on this
subject, and for illustrative figures, the student is referred to
two memoirs by Dr Whewell, published in the Cambridge
Philosophical Transactions, Vol. Vii1. page 659, and Vol. IX.

Page 150.
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Curves of double Curvature.

120. Let @, y, 2 be the co-ordinates of a point on a curve
in space; @+ Az, y+ Ay, z+ Az the co-ordinates of an
adjacent point on the curve. Then it is known by the prin-
ciples of solid geometry, that the length of the chord joining
these two points is #/{(Az)*+ (Ay)*+ (A2)"}. Let s be the
length of the arc of the curve measured from some fixed point
up to (x, y, 2) ; and let s+ As be the length of the arc measured
from the same fixed point up to (z + Az, y+ay = + Az).
‘We shall assume that As bears to the chord joining the adja~
cent points a ratio which is ultimately equal to unity when
the second point moves along the curve up to the first point.
Thus the limit of

' As
- As . : Az
that is, of
v{(az)'+ (By)" + (A2)'}’ ’ 1+ (ﬂ/)'_l_
. ‘ Aw
is unity. Hence «/{

=i+ @@}
therefore 5= f M { 14 (%)”’ (ﬁ-i) } da.

From the equations to the curve %: and ZZ—; may be ex-

 pressed in terms of z, and then by integration s is known in
terms of . :

(=)}

121. With respect to the assumption in the preceding
article, the student may refer to Diff. gal. Arts. 307, 308; he
may also hereafter consult De Morgan's Differential and
Integral Calculus, page 444, and Homersham Cox’s Integral
Calculus, page 95.

122. Suppose, for example, that the curve is determined
by the equations



. LENGTHS OF CURVES. 107

so that the curve is formed by the intersection of two cylin-
ders, namely a cylinder which has its generating lines parallel
to the axis of z, and which stands upon the parabola in the
plane of (z, y) given by (1), and a cylinder which has its
generating lines parallel to the axis of y, and which stands on
the cycloid in the plane of (2, 2) given by (2). Then

E-V0) B0
e o= /(14 242010) = f(229),;

therefore s - N (2¢ + a) % =24/(2¢+a) V.

No constant is required if we measure the arc from the origin
of co-ordinates.

123. The formula given in Art. 120 may be changed int;)
YN
R

and in some cases these forms may be more convenient than
that in Art. 120.

124, Sometimes a curve in space is determined by three
equations, which express z, y, z respectively in terms of an
auxiliary variable ; tgen by eiyiminating this variable, we may,
if necessary, obtain two equations connecting «, y, and 2, and
thus determine the curve in the ordinary way. Suppose then
z, y, z each a known function of ¢; then

dy dz
dy_de  ode_di
v~ dm " &T&’
dt dt



o el
I/ )
W ER R

125. Adpplication to the Heliz.
This curve may be determined by the equations
x=aqa cos i, y=asint, 2 =ct;

thus | a=¢(a’+c’)fdt=td(a’+c’)+0.

126. When polar co-ordinates are used to determine the
position of a t.EOint in space, we have the following equations
connecting the rectangular and polar co-ordinates of any

. point,
z=rsinfcos¢p, y=rsinfsingd, z=rcosh.

And as a curve in space is determined by two equations
between «, 7, and z, it may also be determined by two equa-~
tions between r, 6, and ¢. Thus we may conceive » and
¢ to be known functions of 6, and therefore , y, and z
become known functions of 6.

Hence
%=sin0 cos ¢ Z—;—r sin 0 sin¢%—g+r cosacos{:,

@=sin03in ‘k+rsin0cos flj—’+r cos @ sin ¢,
do do do

%=cos€%—rsin0.

Therefore (dﬁ)’+ (‘Z—)’+ 20) =\a0 a0

)+ (@) + (Ga) = () + oo () +
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and o= J {r’+ (%)'+r'sin'0(%)'} 6.

This may be transformed into

o= ,\/ {r’ (j-‘-:)'+ 1+ rsin' (‘%’)} dr |

orinto #=]| \/ {r’ (Z%)'+ (%)'+ ” sin'ﬁ} .

127. If p be the perpendicular from the origin on the

tangent to a curve in space, then the equation
b___r
dr N -p)’
which was proved for a plane curve in Art. 85, will still
hold. For each member of the equation expresses the secant
of the angle which the tangent makes with the radius vector
at the point of contact.

Therefore 8= f W’%P—') .

EXAMPLES.

1. For what values of m and = are the curves a™y*=z™"

rectifiable? (See Art. 15.)
n n 1. .
Result. If 2m °F 5, +3 18 an integer,
2. Shew that the length of the arc of a Tractory measured

from the cusp is determined by s=clog§. '

3. Shew that the Cissoid is rectifiable.

4. Shew that the whole length of the curve whose equation
is 4 (*+ ") — a* = 3aly! is equal to 6a.
2

]
[It may be proved that (%) = m] .
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10.

11.

12.

EXAMPLES.

The length of the arc of the curve
(@+y)t- (@—g)t=adt
between the limits (2, y,) and (z; ) is
1 1 :
2_';/—2 {(‘v +3/)§+ (z _:’/)g}43 - m {(mx + yx)g"' (xx - ."/1)§}i )
If s= ae;, find the relation between « and y.
Shew that the intrinsic equation to the parabola is

ds _ 2a ors=21o 1+sing asing
dp cos’¢ =2 %1 sm¢’ I-sm'¢"
The intrinsic equation to the curve 3* = az® is
8a
s=ou (sec’p —1).

Shew that the length of the arc of the evolute of a
parabola from the cusp to the point where the evolute
meets the parabola is 2a 33 A3 —1); where 4a is the
latus rectum of the parabola.

The evolute of an epicycloid is’an epicycloid, the radius

of the fixed circle being - _‘:‘_ 55 and the radius of the
generating circle = :_626 . (Arts. 110 and 114.)

Shew that if the equation to a curve be found by
eliminating 6 between the equations

@ = 8in 8 (6) + cos 8" (6),
and y=cos 8’ (0) — sin 64" (6),
then & =+(6) +v"(6)-
Shew that the length of the curve 8a’y =a'+ 6a’2*
measured from the origin is 8%" (@* + 4a”)t.
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CHAPTER VII.
AREAS OF PLANE CURVES AND OF SURFACES.

Plane Areas. Rectangular Formule.. Single Integration.

128. Let DPE be a curve, of which the equation is
y=¢ (x), and suppose @, y to be the co-ordinates of a point
P. Let A4 denote the area included between the curve, the
axis of z, the ordinate PM, and some fixed ordinate 4D, then
(Deffe Cal. Art. 43)

Y b@;
hence 4= f ¢ (z) d.
Let 4 () + C be the integral of ¢ (z); thus

.A=1Ir(x)+0.

Let A4, denote the area when the variable ordinate is at a
distance = from the axis of y, and let 4, denote the area when
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tlﬁe variable ordinate is at a distance z, from the axis of y;
then
4, =y (=) +0C, A,=(z) + C;

therefore A,— A4, =+ (z) —Y(z) = f ’."¢ () d.

129. Application to the Circle.
The equation to the circle referred to its centre as origin
is y* =a'—a'; here ¢ (x) =+/(a’— 2%) ; thus

The constant C vanishes if we suppose the fized ordinate
to coincide with the axis of y. It mﬁ be seen by drawing a
figure, that the area comprised between the axis of «, the axis
of y, the circle, and the ordinate at the distance = from the
axis of y, may be divided into a triangle and a sector, the
values of which are given by the first and second terms in the
above expression for 4. This remark may serve to assist the
student in remembering the important integral

a . L
5 8

f\/(as_z:)dm=a"\/(a;_m')+

130. Application to the Ellipse.

Suppose it required to find the whole area of tbl:e ellipse.
The equation to the ellipse may be written 3*= e (o'~ 2%).
Hence the area of one quadrant of the ellipse

a } N add
=[[ v -ade= [V - e da=G T =TT

hence the area of the ellipse is mwab.

131. Application to the Parabola.
The equation to the parabola is * = 4ax ; here then
¢ (%) = ¥/ (4az),
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3
thus with the notation of Art, 128

4,— A, = [y az) 2o =2Y% (o}~ o).

and [Vttaz) do= 24224 1 g

If o, = 0 we have for the area é%@ a:,’, that is, two thirds

of the product of the abscissa «, and the ordinate 4/(4az,).
132. Application to. the Cyclovd.
The integration required by the formula f ydz becomes

sometimes more easy if we express = and y in terms of a new
variable. Thus, for example, in the cycloid we can put
(Diff. Cal. Art. 358)

z=a(l—cosf), y=a(f+sinb);
therefore j ydo=a* f (0+5in 6) sin 8 &0

=a'fasinodo+‘§f(1 — cos 26) d;

this gives . o' (—60cos @ +sin ) +a-§ (0— sm:ﬁ) .
If we take this between the limits 0 and o for 6, we obtain

the area of half a cycloid; the result js %—’E . Hence the
area of the whole cycloid is equal to three times that of the
generating circle. :
133. The equations to the companion to the cycloid are
m=a(1 —cosO), y=a0;
hence it may be shewn that the area of the whole curve is
twice that of the generating circle.

134. If a curve be determined by the equation @ =¢ (y),
then the area contained between the curve, the axis of g, and

T. I C. 8
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lines drawn parallel to the axis of  at distances respectively
equal to y, and y, is f y’qb (y) dy. This is obvious after the
proof of the similar propo:%ition in Art. 128.

135. The formule in Arts. 128 and 134 furnish one of
the most simple and important examples of the application of
the Integral Calculus. As we have already remarked, the
problem of determining the areas of curves was one of those
which gave rise to the Integral Calculus, and the symbols
used are very expressive of the process necessary for solving
the problem. In the figure to Art. 128, the student will see
that the rectangle PpNM may be appropriately denoted by
yAz, and the process of finding the area of 4DEB amounts
to this; we first effect the addition denoted by ZyAz, and
then diminish Az indefinitely.

136. Suppose we require the area contained between the
curve y=c sing, the axis of x, and ordinates at the distances
z, and =, respectively from the axis of y. 'We have

cf:sing da = ca (cos‘% ~ cos %’) .

Suppose then z, =0 and z, = am; the area is 2ca. Next
suppose z, =0 and , = 2a7; the result

ca <cos D cos 5)
a a
becomes zero in this case, which is obviously inadmissible,
since the area must be some positive quantity. In fact sing
is negative from & =am to @ =2am, but in the proof that the
area is equal to f ydzx, it is supposed that y is positive. If
y be really negative the area will be f (—v) de.
Thus in the present example the area will not be
far |, .z . @\
f sin - de but cf sin —d:c+cf (—sm —) dz,
0 a 0 a 7

2

2ax
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. o,z W
that is, c f sm;dz—c smadz;
0 ax

this will give 2ca + 2ca, that is, 4ca.

Plane Areas. Rectangular Formule. Double Integration.

137. In Art. 128 we have obtained a formula for finding
the area of a curve; that formula supposes the area to be the
limit of a number of elemental areas, each element being a
quantity of which yAz is the type. We shall now proceed to
explain another mode of decomposing the required area into
elemental areas.

y }/
pan
Q
B T
i .7 {
=—r
— 1 |
0 4 5. 4 x =%

Suppose we require the area included between the curves
BPQE and bpge, and the straight lines Bb and Fe. Let a
series of lines be drawn parallel to the axis of g, and another
series parallel to the axis of x. Let st represent one of the
rectangles thus formed, and suppose « and y to be the co-ordi-
nates of s, and z + Ax and y + Ay the co-ordinates of ¢; then
the area of the rectangle st is AzAy. Hence the required
area may be found by summing up all the values of AzAy,
and then proceeding to the limit obtained by supposing A
and Ay to diminish indefinitely.

e effect the required summation of such terms as AzAy
in the following way: we first collect all the rectangles

8—2
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similar to st which are contained in the strip PQgp, and
we thus obtain the area of this strip; then we sum up all
the strips similar to this strip which lie between Bb and
Ee. The error we may make by neglecting the element of
area which lies at the top and bottom of each strip, and
which is not a complete rectangle, will disappear in the limit
when Az and Ay are indefinitely diminishe(f. .

Let y=¢ () be the equation to the upper curve, and
y =+ (x) the equation to the lower curve; let O0C=c and
OH = bk, then if 4 denote the required area, we have

h [$(2)
y| =f ] dady ;
cJy@

for the symbolical expression here given denotes the process
which we have just stated in words. :

(z)
Now f dy =y, therefore r ( dy = ¢ (x) =Y (x); thus we
v(@) :
have . _
4=["$@ - v @) do.

In this form we can at once see the truth of the expression,
for ¢ (x)—r(x)=PL—pL=Pp; thus {gb&a:) — Y (x)} Az may
be taken for the area of the strip PQgp, and the formula asserts
that 4 is equal to the limit of the sum of such strips.

The lines in the figure are not necessarily equidistant:

that is, the elements of which Az Ay is the type are not
necessarily all of the same area.

138. The result of the preceding article is, that the area
A is found from the equation

h
4=[" 9@ -+ @}z

This result may be obtained in a very simple manner as
shewn in the latter part of the preceding article, so that it was
not absolutely necessary to introduce the formula of double
integration. We have however drawn attention to the

formula
h ré(2)
A= f f “dedy
e Jy(@)



AREAS OF PLANE CURVES AND OF SURFACES, 117

because of the illustration which is here given of the process

of double integration; the student may thus find it easier to

apply the processes of double integration to those cases where

itftl: absolutely necessary, of whicirexamples will occur here-
.

139. If the area which is to be evaluated is bounded
by the curves z=+(y), and z=¢ (y), and straight lines
parallel to the axis of & at distances respectively equal to ¢
and %, we have in a similar manner

h e h
a=["[" ayda= [ 1 4) -+ W)} 4.

Some examples of the formul® of Arts. 137 and 139 will
now be considered ; we shall see that either of these formul=
may be used in an example, though generally one will be
more simple than the other.

140. Required the area included between the parabola
y'=ax and the circle y' =20z — 2"

The curves pass through the origin and meet at the point
for which z=a; thus if we take only that area which lies
on the positive side of the axis of #, we have

4=["Waa—a) - (e} do = TE -2

2

The whole area will therefore be 2 (% —E;;i .

Suppose that we wish in this example to integrate with
respect to « first. From the equation y*=2ax —«* we deduce
z=a +/(a’'—y), and it will appear at once from a figure
that we must take the lower sign in the present question.

Thus let z, stand for a—#/(a* - 3*), and =z, for %’, then

a= [ ayae= ! s v -y} ay

a* wa'® wa' 24°
=g=dt =7 "3
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The reader should draw the figure and pay close attention
to the limits of the integrations.

141. In the accompanying figure § is the centre of a
circle BLD, 8 is also the focus of a parabola ALC; we shall

¥ c

indicate the integrations that should be performed in order to
obtain the areas ALBand LDC. This example is introduced
for the purpose of illustrating the processes of double integra-
tion, and not for any interest in the results: the areas can be
easily ascertained by means of formule already given; thus
ALB is the difference of the parabolic area S and the
quadrant - SLB; and similarly LDC is known.

Take § for origin. In finding the area ALB it will be
convenient to suppose the positive direction of the axis of =
to be that towu%s the left hand; thus if 4a be the latus
rectum of the pa.rabola, and therefore 2a the radius of the
circle, the equation to the parabola is y*=4a (2 — ), and that
to the circle §* =4a"— 2"

Suppose we integrate with respect to « first, then
area ALB= f f dyds,
0 Jez
where a:1=a'—~y—‘ x, = /(40" — ).

4a’

For here (x, — o,) Ay represents a strip included between
the two curves and two lines parallel to the axis of z; and
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strips are situated at distances from the axis of 2 ranging
between 0 and 2a, so that the integration with respect to y is
taken between the limits 0 and 2a.

Suppose we integrate with respect to y first ; we shall then
have to divide the area into two parts by the line AF. Let

y,=+V(4ad'—dax), y,=+(4a'—-2");

then areaALF=f¢fy’d$d!/=f¢(3/a—?/l)d"’?
0Jy, 0

26 (Yg 24
areaAFB:[ f dwdy=f . dz;
aJo a

the sum of these two parts expresses the area ALB.

Next take the area LD C'; suppose now the iositive direc-
tion of the axis of « to be that towards the right hand, then

the equation to the parabola is y* = 4a (¢ + ), and that to the
circle 3* = 4o’ — 2"

Suppose we integrate with respect to y first; let
y,=+(4a'— ") and y,=4/(4a" + 4ax);

2 (Y,
then area DLC’=f f dxdy.
0 Jy

Suppose we integrate with respect to « first; we shall then
have to divide the area into two parts by the line LK, Let

z=vlta~g), 7=1—a;
then we shall find that D C'=2a /3 = b suppose ; thus
area DLK = f * f‘" dy da,
- [
b (2
aréa 0LK=f n[ By de;
%y -

the sum of these two parts expresses the area LDC. . .
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'142. One case in which the formule of Arts. 137 and
139 are useful is that in which the bounding curves are
different branches of the same curve. Su[: se the equa-
tion to a curve to be (y —mx —c)*=a'—2*; thus

y=mx+ct(a'-).
Here we may put
¥ (@) =mz +c = y(s" —2)),
$ (@) = mo+ o+ (@ — 2 ;

thus ¢ (z) — 4 (z) =2 4/(a*— «%), and the complete area of
the curve is

f *2 y(a'— o) dw, that is, ma'.

143. We have hitherto supposed the axes rectangular,
but if they are oblique and inclined at an angle w, the for-
mula in Art, 128 becomes

A=sinwf¢(z)dw,

and a similar change is made in all the other formule. It is
obvious that such elements of area as are denoted by yAz
and AyAz when the axes are rectangular will be denoted by
sinw yAz and sin @ Ay Az when the axes are inclined at an
angle .

For example, the equation to the parabola is y=4a’2 when
the axes are the oblique system formed by a diameter and
the tangent at its extremity; hence the area included be-
tween the curve, the axis of z, and an ordinate at the point
for which z=c¢, is

. ’ !.
sin f 04/(4a'm)dx=w_"_,
Jo
that is, two thirds of the parallelogram which has the abscissa
c and the ordinate at its extremity for adjacent sides.
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Plane Areas. Polar Formule. Single Integration.

C

& >

144. Let CPQ be a curve, of which the polar equation is
r=¢(6), and suppose r, 6 to be the co-ordinates of a point P.
Let A denote the area included between the curve, the radius
vector SC drawn to a fixed point C, and the radius vector
8P, then (Diff. Cal. Art. 313)

a4 _{s OF

e~ 2 -
Hence 4=4[1p @) a.
Let 4 (6) be the integral of £, then

A=y (0) + C.

Let A, denote the area when the variable radius vector is
at an angular distance 6, from the initial line, and let 4,
denote the area when the variable radius vector is at an an-
gular distance 6, from the initial line; then

4,=90@)+0 A=v(0)+C
0’
therefore 4, —4,=(6) —¥(0) =} [ "9 @)} db.
145. Application to the Equiangular Spiral.
0
In this curve r =bec; thus

20 20
A=a}~fb’e7d0=-b;—ce7+0.
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6, 2 e 20y 20, P
and A—-A =%] b'3°d0=—(67—e?)=—(r’—r’)

where r, and », are the extreme radii vectores of the area
conmdered

146. Application to the Parabola.
Let the focus be the pole, then

dé
-—a thus 4= —?
cos® 3 cos‘— :

]
tan® 0+0

aa
2" 3

__.%f(1+tan=9)sec' d=atan 0+ &

Hence A,—Al=a’(tan% —tan%) +‘;—'(tan’%—tan' g%).

Suppose that 6, =0 and 0,—— then we obtain for the
., a . 4a' .. .
area o'+ —, that is, 3 this agrees with Art. 131.

For another example we will suppose the parabola refer-
red to the intersection of the directrix and the axis as pole,
the axis being the initial line. Here

cos 8 — 4/(cos 26)

r=2 sin*d

thus /cos 0 + cos 20 2 cos 04/ (cos 26) d

o .
=94 f2cos0—sm0do wf"”a*/("“”)do
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20 _ oin?® .
Now M do = f (2 cot’@ — 1) cosec'd db
sin‘d -
= — § cot’@ + cot 6.
And fcosﬂJ(cos?H)'dG_ v (1—2s8in’6) dsin§ _
sin‘6 - sin‘d ’

assume gin @ = tl’ then the integral becomes

-f,,/(t’— 2) tdt, that is, —} (#—2)%
Hence, adding the constant, we have
2 2
A=i:;i (cosec* 6 — 2)¥ —%‘; cot’d + 2a*cot6 + C

4a® (cos 20)‘ — cos®d

= 2 —_—
2a* cot 0 + 3 oy + C.

The constant will be zero if 4 commences from the initial
line; for it will be found on investigation that

(cos 26)¥ — cos*d

- vanisheé when 6 =0.
sin*d

4
2cot9+§

147. Application to the curve r =a (0 +sin6). Here
a’ a' . .
A= Ef(0+sin0)’d0= 5[(0'4-29 sin 0 + sin'6) d6;

and fasin0d0=—0c050+sin0

s 2 /] in 260
fsm0d0=‘}f(1—cos20)d0=§_8m4 ,
a (¢ . 0 sin20

thus =§-{§-—200050+2sm0+§————4 }+C.

Suppose we require the area of the smallest portion which
is bounﬁed by the curve and by a radius vector which is
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inclined to the initial line at a right angle; then we have 0
and }7 as the limits of the integration. Thus the required

ares 18
ad(m =
5{24""4 "'2}"

Plane Curves. Polar Formule. Double Integration.

148. In Art. 144 we have obtained a formula for finding
the area of a curve; that formula supposes the area to be the
limit of a number of elemental areas, each element being a
quantitiy of which 7A@ is the type. We shall now proceed
to explain another mode of decomposing the required area
into elemental areas.

Suppose we require the area included between the curves
BPQE and bpge, and the straight lines Bb and Ee. Let a
series of radii vectores be drawn from O, and a series of circles
with O as centre; thus the plane area is divided into a series
of curvilinear quadrilaterals. Let o represent one of these
elements, and suppose » and 6 to be the polar co-ordinates of
s, and 7 + Ar and 6+ A@ the polar co-ordinates of ¢; then the
area of the element st will be ultimately »A6@Ar. Hence the
required area is to be found by summing up all the values of
rA0 Ar, and then proceeding to the limit obtained by sup-
posing Af and Ar to diminish indefinitely.
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We effect the required summation of such terms as rAf Ar
in the following way: we first collect all the elements similar
to st which are contained in the strip PQgp, and thus obtain
the area of the strip; then we sum up all the strips similar to
this strip which lie between Bb and Fe.

Let r=¢(6) be the equation to the curve BPQE and
r=+() the equation to the curve bpge, let a and 8 be the
angles which OB and OE make respectively with Oz; and
let 4 denote the required area, then

A=fﬂ “‘)rdadr;
a/ (0)

for the symbolical expression here given denotes the process
which we have just stated in words.

Now f rdr = ;, therefore

[*Orar= 4118 OF - (v OV,

¥(0)
thus we have

a=4[ s @OF -+ O db.

In this form we can see at once the truth of the expres-
sion, for OP=¢(f) and Op=+(), and thus

3 {p () A0 (v (6)} A0

may be taken for the area of the strip PQﬁp, and the formula
asserts that the area 4 is equal to the limit of the sum of
such strips.

149. The remark made in Art. 138 may be repeated
here; we have introduced the process in the former part of the
preceding article, not because double integration is absolutely
necessary for finding the area of a curve, but because the
process of finding the area of a curve illustrates double inte-

gration.

150. 1If the area which is to be evaluated is bounded by
the curves whose equations are 0=¢(r), 6=+ (r) respectively,
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and by the circles whose equations are » =a and =5 re-
spectively, it will be convenient to integrate with respect to
0 first. In this case, instead of first summing up all the
elements like sz, which form the strip PQgp, we first sum up
all the elements similar to st which are included between the
two circles which bound st and the curves determined by
6=¢(r) and 6=+ (r). Thus we have

b [é )

A= rdr d6.

a’ Yyir)

Some examples of the formule in Arts. 148 and 150 will
now be considered ; we shall see that either of these formuls
may be used in an example, although one may be more con-
venient than the other.

151. We will apgly the formula to find the area between
the two semicircles OPB and Opb and the straight line 6.5.

B

o [ B c

Let Ob=c, OB=F, then the equation to OPB is »=1% cos 6,
and the equation to Opb is r=ccos§. Thus the area

% phoose
=ff rd0 dr.
0/ ccosé
h

, cosd
Now f rdr =% (B = &) cos’0;
c

cos @
x
‘thus the area=1} (&' —¢’) facos'() dé = '-g(h’— ).
0

Suppose we wish to integrate with respect to 0 first; we
shall then have to divide the area into two parts by describing
‘an arc of a circle from O as centre, with radius Ob. Then
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the area bounded by this arc, the straight line Bb, and the

larger semicircle is
A -17.
j fm * vdr do.
e/0

The area bounded by the aforesaid arc, the semicircle Opb,
and the larger semicircle is

¢ rcoa1}
f / , rdrdb.
0/ cos—! v

The sum of these two parts expresses the required area.

152. Let us apply polar formuls to the example in
Art. 141. 'With §as pole, the polar equation to the parabola is

r(1+ cos 0) =2a or r cos’§ =a, where 0 is measured from

SB; and the polar equation to the circle is »=2a. Hence,
if we integrate with respect to r first,

3 (28
srea ALB=["[" ,rdbdr.
0/ asec

If we integrate with respect to @ first, we shall have if

L 2a—~7r
0,=cos™ ——

29,
area ALB = f f rdr d6.
a [1]

Next consider the area DLC. The equation to DC is
rco8 0 = — 2a; the length of SC is 4a, and the angle BSC

is 2 Let 0, =cos 28T , 6, =cos™ (‘_?ﬁ) Then if
3 1 r g r

we integrate with respect to @ first,
0q

area DLO= [ [ " rdrdo.
2aJ 6,

. If we integrate with respect to r first, we shall have to
divide the area into two parts, by the line joining S with C.
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The area of the portion which has L C for one of its bounda-

ries is
bid [
T aaec’i
dl dr.
fz f“ rd6 dr
2

The area of the remaining portion is
= [-2asecO
[7[* a0 ar.
/%
8

The sum of these two parts expresses the required area.

153. A good example is supplied by the problem of find-
ing the area included between two radii vectores and two
different branches of the same polar curve.

Suppose BPpb, CQqc to be two different arcs of a spiral,
and that the area is to be evaluated which is bounded b
these arcs and the straight lines BC and bc; then the area 1s

Y [RENE)
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where 7, denotes any radius vector of the exterior arc, as SQ,
and 7, the corresponding radius vector SP of the interior arc.
The limits of § will be given by the angles which SB and
Sb respectively make with the initial line.

Take for example the spiral of Archimedes; let 8 be the
whole angle which the radius vector has revolved through
from the initial line until it takes the Position SP; so that
may be an angle of any magnitude. From the nature of the
curve we have SP or r=af, where a is some constant. If
then CQ is the next branch to BP we shall have

8Q=a(0+2m).

Suppose 6, and 6, the values of @ for SBand Sb respectively;
thus the area BbcC

-5 [F10 +2ay -6y a0
= 22-, (2w (0;’ -6 + 4" (6, 0,)}.

154. The student will remark a certain difference between
the formulae f f dx dy and f f r df dr, which express the area

of a plane figure. The former supposes the area decomposed
into a number of rectangles and AzAy represents the true
area of one rectangle. Hence in taking the aggregate of
these rectangles to represent the required area the only error
that can arise is owing to the neglect of the irregular elements
which occur at the top and bottom of each strip; as we have
already remarked in Art. 137. But in the second case rAf A~
is not the accurate value of the area of one of the elements,
so that an error is made in the case of every element. It is
therefore important to shew formally that the error disappears
in the limit, which may be done as follows. The element st
in the figure of Art. 148 is the difference of two circular sectors,
and its exact area is ’

3 (r+ Ar)’A6—-1 A6,
that is, rArAf+3% (A7)’ A6.
T.1.C. 9
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In taking the former term to represent the area we neglect
4 (Ar)*A6. Hence the ratio of the term neglected to the
term retained

_3(Ana0_Ar

rArA6 2 "

By taking Ar small enough this ratio may be made as small
as we please. Hence we may infer that the sum of the
neglected terms will ultimately vanish in comparison with
the sum of the terms retained, that is, all error disappears in
the limit.

Otker Polar Formule.

155. Let s be the length of the arc of a curve measured
from some fixed point up to the point whose co-ordinates are
r and 0; let p be the perpendicular from the origin on the
tangent at the latter point; then the sine of the angle between

this tangent and the corresponding radius vector is r%f (D

Cal. Art. 310); also g is another expression for this sine;

hence, Zg:g Let A denote the area between the curve

and certain limiting radii vectores; then
A=} [rao=[r D ds= [ ao=} [pds;

the limits of s in the latter integral must be such as correspond
to the limiting radii vectores of the area considered.

The result can be illustrated geometrically ; suppose P, @
adjacent points on a curve, S the pole, p’ the perpendicular
from S on the chord P@; then, the area of the triangle PQ.S

=4p' x chord PQ.

Now suppose @Q to approach indefinitely near to P, then p’=p,
and the ﬁ(t)nit of the ratio of the chord PQ to the arc %Q}:s
unity.
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: [, B g [Prdr
156. Since f pds = fp T ir= [ (. 50),
dr
b A=3 |- Brer
we have }[«/(f'—p’)

157. Application to the Epicycloid,

’ —
Here p:=2<5’_"‘__a‘.ﬂ; thus

_1 [N —a)rdr ¢ V(- a") rdr
4=3% ay(—-r) afd{é—a’—(a’—a’)}

z’dz (]
=% m, where 2*=7"—a’.
Now
2'dz _[#'—=(c"—a" __ds
[ree=a[ierasdere-a e

dz 4
=@-a) [y~ Ve - - e
d=d ., =z z4('—a’'—2")
2 N VE—a 2
_d—d V=) P —a) V(=)
2 V(c—a¥) 2 :
Ta:.king this between the limits r=a and » =¢, we get
S @ T, thatis, b(a-+b)m. Honco tho sres is b (a+8)m,
that is, EFXDEE@IDNT - gy 4oping this result we ob-

tain the area between the curve and the radii vectores drawn
(a+20) b(a+d)m
P .

to two consecutive cusps, which is therefore

The area of the circular sector which forms part of this area is
7rab ; subtract the latter and we obtain the area between an
arc of the epicycloid extending from one cusp to the next cusp

9—2
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and the fixed circle on which the generating circle rolls; the
result is

2
7 (a+20).

158. Similarly in the hypocycloid the area between the
fixed circle and the part of the curve which extends between
two consecutive cusps may be found. If a is greater than b
the result is

2
’—'ab— (3a — 2b).

_Area between a Curve and its Evolute.

- 159. 1In the figures to Art. 114, if we suppose the string
or line PQ to move through a small angle A¢, the figure
between the two positions of the line and the curve 4P ma
be considered ultimately as a sector of a circle; its area will
therefore be 4p’Ap, where p=PQ. Thus if 4 denote the
whole area bounded by the curve, its evolute, and two radii
of curvature corresponding to the values ¢, and ¢, of ¢, we
have

$
A=} "p*d
1}[¢.P .
. dp_1 o
Since 3= p " may also write this

A=%fpds,

the limits of & being properly taken so as to correspond with
the known limits of ¢.

160. Application to the Catenary.
Here s=ctan¢, Art. 109;

s .
therefore p=csec*d, A=} f c'sec'dp do;
4 .
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and fsec‘¢d¢=tan¢+§tan’¢+ C;
thus 4 is known.

Area of Surfaces of Revolution. Rectangular Formulew.

161. Let 4 be a fixed point in the curve APQ; let z, y
be the co-ordinates of any point P, and s the length of the
arc AP. Suppose the curve to revolve round the axis of «,
and let § denote the area of the surface formed by the revolu-
tion of 4P; then (Diff. Cal. Art. 315)

a8
a5 =25
therefore 8= f 2rYds ..ocieonnne e (1)
thus §=[amy 2 5 sevreen @),
" ds
and S=f2-n'yzg;dy connrenennne(B)s

Of these three forms we can choose in any particular ex-
ample that which is most convenient. If y can be easily

expressed in terms of s we may use (1); if % can be easily
expressed in terms of ¥ we may use (3); in some cases it may
be more convenient to express y and T in terms of  and
use (2). - “ '
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In each case the area of the surface generated by the arc
of the curve which lies between assigned points will be found
by integrating between appropriate limits,

162. Application to the Cylinder.

Supﬁxose a straight line parallel to the axis of  to revolve
round the axis of x, thus generating a right circular cylinder:
let a be the distance of the revolving line from the axis of z;

ds
then Yy=a, ahd %=1,
thus by equation (2) of Art. 161,
8 =2 |adx=2mazx+ C.

Sur;lpose the abscisse of the extreme points of the portion
of the line which revolves to be z, and z,; then the surface
generated

=ona [ do=2ma (= =).
%
163. Application to the Cone.

Let a straight line which passes through the origin and is
inclined to the axis of « at an angle a revolve round the axis
of z, and thus generate a conical surface. Then

y=xtana, and %=sec a;
thus by equation (2) of Art. 161,
8= 21rftan‘aseca:vdm=1rtana secaz’+ C.
Hence the surface of the frustum of a cone cut off bf planes
perpendicular to its axis at distances z,, 2, respectively from

the vertex is
w tan a seca (! — 2,%).

Suppose @, =0, and let » be the radius of the section made
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by the plane at the distance x,, then r=z,tana, and the
area is
a cosec a .

164. Application to the Sphere. :

Let the circle given by the equation y*=a*—a* revolve
round the axis of ; here

B __=
dx y’
@)

Hence by equation (2) of Art. 161,
- S=27rfy §Jz=21rafd:v= 27raz + C.
Thus the surface included between the planes determined by

z=x and z=g, is 2mwa (x,—x,).
Hence the area of a zone of a sphere depends only on the
height of the zone and the radius of the spglere, and is equal
to the area which the planes that bound it would cut off from
a cylinder having its axis perpendicular to the planes and
circumscribing the sphere; and thus the surface of the whole
sphere is 47ra®. These results are very important,

165. Application to the Prolate Spheroid.

Let the elliEse given by a'y*+ b%* = a’b* revolve round the
axis of # which is supposed to coincide with the major axis
- of the ellipse; here

ly bz
dz ~  dy’
ds B\ bw(at— )
wd Gy ()

Hence by equation (2) of Art. 161,
2mb 2mbe a*
=Tf~’(“"“’“’)”’”°=7f\/(e7‘”')d”
3

=f¢?{m,\/(:—:—z')+%.s' "%’}.
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The surface generated by the revolution of a quadrant of
the ellipse will be obtained by taking 0 and @ as the limits of
« in the integration. This gives

mab {4(1 L e} .

[

166. Suppose one curve to have for its equation y = ¢ (),
and another curve to have for its equation y =+ (z), and let
both curves revolve round the axis of . Let s, and s, denote
the lengths of arcs measured from fixed points in the two
curves up to the point whose abscissa is . Let 8 denote the
sum of the areas of both surfaces intercepted between two
planes perpendicular to the axis of x at the distances z,
and x, respectively from the origin. Then, by Art. 161,

s=2r [* 4 @) P+ ¥ @ T} 2o

Suppose, for example, that there is a curve which is bisected
by the line y=a, so that we may put y=a+x (x) for the
upper branch and y=a—x () for the lower branch. Hence

ds, ds,
dz~ dx’
: Z3 ds
and 8= 41ra/; d—a‘:da;= Mafds"

the limits for s, being taken so as to correspond with the
assigned limits of .

Hence, if there be any complete curve which is bisected b
a straight line and made to revolve round an axis which 1s
parallel to this line at a distance @ from it and which does not
cut the curve, the area of the whole surface generated is equal
to the length of the curve multiplied by 27a.

167. For example, take the circle given by the equation
(—R)+(y—k)*—c'=0.

Here the area of the whole surface generated by the revolu-
tion of the circle round the axis of = will be 27k x 2me.
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There is no difficulty in this example in obtaining sepa-
rately the two portions of the surface. For the part above

the line y = %, we have 2= f yds, that is,
o f [+ V(e — (@—R)Y] ds,

thetis, o fkds+ om fv{a- (x— A} ds.
The former of these integrals is 2mks; the latter is equal to
ds
om fv{a- (=3} 2 gz,

which will reduce to 27 f cdz, that is, 2mcx. Hence the sur-

face required is found by taking the expression 2wrks + 2mex
between proper limits.

Area of Surfaces of Revolution. Polar Formule.

168. It may be semetimes convenient to use polar co-
ordinates ; thus tfrom Art. 161 we deduce

8= [amyds = [omy %2 20 [2mr sin 0 % as,

ds dr\*
where @f——,\/{r’-i-(@)}.
169. Application to the Cardioide.
Here r=a (1+cos §); thus

:Z_l% =a/{(1 + cos 6)*+ sin’ 6} =a /(2 +2 cos ) '-—-2acosg;
thexefore

8= 41ra’f(1 + cos 0) cos g sin 0d6 = 161ra’fcos‘ g sin gde

82ma® -0
A cos§+0.
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The surface formed by the revolution of the complete
curve about the initial line will be obtained by taking 0

. . . . . 32ma’
and 7 as the limits of @ in the integral. This gives i

Any Surface. Double Integration.

170. Let z, y, z be the co-ordinates of any point p of a
surface; z+ Az, y+ Ay, 2+ Az the co-ordinates of an ad-

x
le

/]

Ved

jacent point g. Through lp draw a plane parallel to that
of (z, 2), and a plane parallel to that of (y, 2); also through
g draw a plane parallel to that of (z, z) and a plane parallel
to that of (y, 2). These planes will interoeFt an element pg
of the curved surface, and the projection of this element on
the plane of (z,y) will be the rectangle PQ. Suppose the
tangent plane to the surface at p to be inclined to the plane
of (z,y) at an angle ¢, then it 18 known from solid geometry

that “07=J{1 . (j_:)'+ (gf)'},

where Z‘—; and % must be found from the Akxiown“equation to
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the surface. Now the area of PQ is Az Ay, hence by solid

metry the area of the element of the tangent plane at p of
which PQ is the projection is AzAy secy. We shall assume
that the limit of the sum of such terms as AzAy sec «y for all
values of & and y comprised between assigned limits is the
area of the surface corresponding to those limits. Let then 8
denote this surface; thus.

e[l [+ (B )

the limits of the integrations being dependent upon the
portion of the surface considered.

171.  'With respect to the point assumed in the preceding
article, the reader is referred to the remarks on a similar point
in Diff. Cal. Art. 308. He may alsd hereafter consult De
Morgan’s Differential and Integral Calculus, page 444, and
Homersham Cox’s Integral Calculus, page 96.

172.  Application to the Sphere.

Let it be required to find the area of the eighth part of the
surface of the sphere given by the equation

4y’ +2"=a
' dz x d -y, ’
Here &=
_ z _ adx dy
thus S,—ff«/(1+?+§)dxdy_ffvﬂ(a,_m,_ :

Now in the figure we suppose OL =z ; put y, for L, then
y, =+/(a’— a*), for the value of y, is obtained fzom the equa-
tion to the surface by supposing z=0. If we integrate with
respect to y between the limits 0 and y,, we sum up all the
elements comprised in a strip of which LMml is the projec~
tion an the plane of (z, y). gTow

» . 23 dy - 1 dy
: o V@'=2'—y) ) (9" -Y)

mw
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thus 5= ax.
If we integrate with respeet to  from @ to a, we sum up
all the strips comprised in the surface of which 0A4B is the
) 2

projection. Thus 12‘1- is the required result; and therefore

the whole surface of the sphere is 47ra’.
If we integrate with respect to x first, we shall have

_ (%[ adydz
5= v@=e =y
where z, = 4/(a* - ).

173. As another example let it be required to find the
area of that part of the surface given by the equation

2'+ (zcosa + ys8in a)* — a*=0,

which is situated in the positive compartment of co-ordinates.
This surface is a right circular cylinder, having for its axis
the line determined by 2=0, @cosa +ysina=0, and a is
the radius of a circular section of it. Here

. dz _ _cosa(xzcosa+ysina)
Jdz 2 ?

dz 8in « (z cos @ + y sin a)
pe ,

dy Z .
thus - §= f f 2 d: ¥ f f Vi@ = (xzod:adi/-y sin a)’}*

The co-ordinate plane of (x, y) cuts the-surface in the
straight lines a =1 Eccos a+ysina), and if the upper sign
be taken, we have a line lying in the positive quadrant of
the plane of (z, ).

’ 0 obtain the value of S we integrate first with respect to
y between the limits y =0 and y = (¢ —  cos a) cosec a; now

f dy _ 1 Bin_,a:cou+ysina.
v{a'— (zcosa+ysina)} sina a ’

+
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take this between the assigned limits, and we obtain
1 (-n' . - & COo8 a)
= —sint——);
a

sin a \ 2 H
therefore S=-2 {’_’ — gin T 08 a} i,
. sina) |2 a

and the limits of the integration are 0 and (-‘fga . Hence we

shall find
al
“sina cosa’

174. TInstead of taking the element of the tangent plane
at any {)oint of a surface, so that its projection shall be the
rectangle Az Ay, it may be in some cases more convenient to
take it so that 1ts projection shall be the polar element rA8 Ar.
Thus we shall have

~S=.Usecfyrd9dr.

For example, suppose we require the area of the surface
xy = az, which is cut off by the surface #" + y*=c’; here

2 2 2 .
secfy=«/(1+:—:,+g-,’)=M since z'+y* ="

a

Thus 8=[" [ VLD g dr = 3T ().

175. Suppose z=7 sin @ cos ¢, y=7 sin O sin ¢, z=7 cos 6,
so that », 0, ¢ are the usual polar co-ordinates of a point in
space; then we shall shew hereafter that the equation

s+ () + @}

may be transformed into

5= f \/ frrsint6 + (G5 sint0 + (%)'} rd8dp.
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An independent geometrical proof will be found in the
Cambridge and Dublin Mathematical Journal, Vol. 1X., and
also in Carmichael’s Treatise on the Calculus of Operations.
It will be remembered that in this formula » = /(2* + 3* +27),
while in Art. 174 we denote 4/(<* +y°) by r.

Approximate Values of Integrals.
176. Suppose y a function of z, and that we require
[ “ydz. If the indefinite integral [ ydz is known we can at

once ascertain the required definite integral. If the inde-
finite integral is unknown, we may still s;:ermine approxi-
mately the value of the definite integral. This process of
approximation is best illustrated by supposing y to be an ordi-

nate of a curve so that f ydx represents a certain area.

Divide ¢—a into n parts each equal to 2 and draw n—1
ordinates at equal distances between the initial and final
ordinates; then the ordinates may be denoted by y,, ¥;) «eee--
Yus Ynyye Hence we may take

Ay, + Y+ eeeeee +34)
as an approximate value of the required area. Or we may

take
k (.Vs FYgoeeeer + .'/Au)
as an approximate value.

‘We may obtain another approximation thus; suppose the
extremities of the 7% and 7+ 1]" ordinates joined; thus we
have a trapezium, the area of which is (y,+ym)g. The

sum of all such trapeziums gives as an approximate value of
the area

h{% +y,+y,......+y.+3{7“'}.
This result 18 in fact half the sum of the two former re-

sults. It is obvious we may make the approximation as close
as we please by sufficiently increasing z.
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177. The following is another method of approximation.
Let a parabola be drawn having its axis parallel to that of y;
let y,, v,, y, represent three equidistant ordinates, 4 the dist-
‘ance between y, and y,, and therefore also between y, and g,.
Then it may ge proved that the area contained between the
parabola, the axis of , and the two extreme ordinates is

-k
g (3/1”'43/3"'3/:)'

This will be easily shewn by a figure, as the area consists of
a trapezium and a X:trabolic segment, and the area of the

latter is known by 143.
Let us now suppose that  is even, 80 that the area we have

to estimate is divided into an even number of pieces. Then
assume that the area of the first two pieces is

h
3 (3/1 +4y, +.'/a) ’
that the area of the third and fourth pieces is

h
37ty 490

and so0 on. Thus we shall have finally as an approximate result

)
§{yx+2(."/l+ys+"'“'y-1)+y-+1+4(3/n+y4 """ +3/~)}’

Hence we have the following rule: add together the first
ordinate, the last ordinate, twice the sum of all the other odd
ordinates, and four times the sum of all the even ordinates;
then multiply the result by one-third the common distance
of the ordinates. This rule is called Simpson’s Rule.

EXAMPLES.,

1. If A denote the area contained between the catenary,
the axis of x, the axis of y, and an ordinate at the
extremity of the arc s, shew that 4 =cs. The arc s
begins at the lowest point of the curve.
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10.

11.

EXAMPLES.

The whole area of the curve

o\t | y\d
(@) +@) -
is §mab. (The integration may be effected by as-
suming & =a cos’¢.)
The area of the curve y (2’ +a”) =¢*(a —z) from =0
—aisct (T — '
tox=aisc (4 1}log2).
The area of the curve y*z =4a’ (2a — ) from =0 to
z=2a is 4md’.

Find the whole area between the curve y* (z* + o°) = a’z*
and its asymptotes. Result. 4a’.
2 (a+x)

a—x

Result. 2a* (.1 - -E) .

Find the area of the loop of the curve y*=

2
dlata) o
a—x

Find the area bounded by the curve y*'=
the asymptote z = a, excluding the loop.
Result. 2a* (1 + -E) .

Find the whole area between the curve 3* (2a — ) =2°
and its asymptote. Result, 3ma’.

Find the whole area of the curve (y —z)’=a’—2a".
: : Result. mwa®.

Find the area included between the curves
: 16a®
3 -

y'—4dax=0, z'—4day=0. Result.

Find the whole area of the curve a'y® + 4% = a’b%*.
Result. 4ab.



12.

13.

14.

15.

‘16.

17.

18.

19.

20.

EXAMPLES. 145
Find the area of a loop of the curve a’y*=z*(a’—a").
4a"

Re.mlt. —5—.

The area between the tractory, the axis of y, and the
asymptote is 7°. (Ses Art. 100,)

T
Find the area of a loop of the curve
¥ @) =@ =), Relt. S (r-2).
Find the area of the loop of the curve
16a%* = B'2* (a* — 2ac2). Result. 2.
Find the area of the loop of the curve

2% (o + o) = ( — @)%
Result. a*{3y2log (1+42) —2).

Find the whole area of the curve
2y* (@' + @*) — 4ay (a* — 2*) + (a*— 2")*=0.

Result. a’w{l&—i;@}.
Find the area of the curve
=csinZ.logsinZ
y=csin-.logsin—

from =0 to = =anr, Result. 2ac (1—log 2).

a

=4, and from the result deduce the area of the hy-
perbola 2y = a® between the same limits,

Find the area of the curve %’= (‘f ¥ between & =a and

Find the area of the ellipse whose equation is

aw‘+2bzy+cy'=l. Result. V(GZTb’_).
. 1. C. 10
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21.

22.

23.
24.

25.

26.
27.
28.

29.

30.

EXAMPLES.
Find the area of & loop of the curve r*=q*cos 2.
Result.

Find the area contained by all the loops of the curve
r=asinaf..

Result. 1;1 or ; accordmg as « is odd or even.

Find the area between the curves » =a eos 26 and »=a.

Find the area of a loop of the curve »*eos @=a’sin 36.

Result. EZ———log2

Find the whole area of the curve r=a (cos 26 + sin 26).
Result, ma’.
Find the area of a loop of the curve (* + 3°)® = 4a%z"y".

ra®
Result. T .

Find the whole area of the curve
(@ + ") =402+ 4b%".  Result. 2w (a®+B").

Find the whole area of the curve

m:+‘;§ ( +~:) Result, ab( o+ B%).

Find the area of the loop of the curve
y,_ 3axy+z’= 0. .R&iuzt. T .

Find the area of the loop of the: curve
rcosf=acos0.  Result, ( —%) a’.

IR

-



3t.

32.

33.

36.

37.

38.

39.
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Find the area of the curve

a*

7=m+bcoso,
. a’ b’
a being greater than 3. Result. m’;:;,-)-+-§— .

In a logarithmic spiral find the area between the curve
and two radii vectores drawn from the pole.

Find the area between the conchoid =a + 5 cosec 8
and two radii vectores drawn from the pole.

In an ellipse find the area between the curve and two
radii vectores drawn from the centre.

In a parabola find the area between the curve and two
radil vectores drawn from the vertex.
Find the area included between the curve
r = a (sec 6 + tan 6)
o™

and its asymptote rcos 0 =2a.  Result. (—2- + 2) a.

The whole area of the curve r=a(2cosf+1) is

a"(2or+?—%?—'), and the area of the immer loop is

(o)

Find the whole area of the curve » = a cos § + b, where

iz is greater than &. Also find the area of the inner
oop.

H = and y be the co-ordinates of an equilateral hyper-
bola ' — y*=a’, shew that
a X N a s N
=§(e'7+e @), y=-2—(e53—e @),

where u is the area intercepted between the curve, the
central radius vector, and the axis.

10—2
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40. Find the whole area of the curve which is the locus of
the intersection of two normals to an ellipse at right
angles. Result. m(a—0b)".

It may be shewn that the equation to the curve is

“7* (a* + b") (a® sin® 0 + &* cos® 6)*
= (a*— b%)* (a* sin® @ — 3" cos® 6)".
41. TFind the area included within any arc traced by the
extremity of the radius vector of a spiral in a com-

plete revolution, and the straight line joining the ex-

tremities of the arc. If, for example, the equation to
*  the spiral be r=a(%r> , prove that the area corre-

sponding to any value of § greater than 27 is

i) -Gy )

42. Find the area contained between a parabola, its evolute,
and two radii of curvature of the parabola. (Art. 159.)

43. Find the area contained between a cycloid, its evolute,
and two radii of curvature of the cycloid.

44. Find the area of the surface generated by the revolution
round the axis of « of the curve zy=~"

45. Also of the curve y =ae’.
46. Also of the catenary y=§(e;+e-?).

47. Shew that the whole surface of an oblate spheraid is
eI figltd
27.“7' {1 + 2e log 1—e

48. A cycloid revolves round the tangent at the vertex;
shew that the whole surface generated is -2;3—2 wa'.




49.

51.

52.
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A cycloid revolves round its base; shew that the whole
surface generated is -‘;—4 wa’.

A cycloid revolves round its axis; shew that the whole
surface generated is 8ra® (r— §).

The whole surface generated by the revolution of the
tractory round the axis of « 18 4wc’.

A sphere is pierced perpendicularly to the plane of one
of its great circles by two right cylinders, of which
the diameters are equal to the radius of the sphere and
the axes pass through the middle points of two radii-
that compose a diameter of this great circle. Find the
surface of that portion of the sphere not included
within the cylinders.

Result. Twice the square of the diameter of the
sphere.

Find the surface generated by the portion of the curve
y=at alog%between the limits z =a and 2 = ae.

Result. 4ma’ {1 +V(1+€) -2+ log‘fﬁ(-l%} .

Find f fi‘—g, where dS represents an element of surface,

and p the perpendicular from the origin upon the
tanggnt pla.nergf the element, the integral bein’g ex-

tended over the whole of the ellipsoid = +%-: + f? =1.
Besult, ™ (@845 + &),
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CHAPTER VIIL

VOLUMES OF SOLIDS.

Formailes involving Single Intogration. Solid of
Revolution.

178. Lzt A be a fixed point in a enrve 4P, and P any
other point on the curve whose co-ordinates are « and y. Let
the curve revolve round the axis of &, and let V denote the
volume of the solid bounded by the surface generated by the
curve and by two planes perpendicular to the axis of z, one
thrc;ngh A and the other throngh P; then (Diff Cal. Art.
314

av
&=

therefore | V=[ny.

From the equation to the curve y is a known fanction of x ;
suppose 4~ (z) to be the integral of 7y*; then

V=4 (@) +C.
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Let V| denote the volume when the point P has z, for its
abscissa, and V, the yolume when the point P has , for its

abscigsa; thus

V=¥ @)+ G,

V=¥ (=) + G, :
therefore V= V= (z) ¥ (&) = f:’y*dx.

179. Application to the Right Circular Cone.

. Let a straight line pass through the origin and make an
angle a with the axis of z; then this straight line will gene-

rate a right circular cone by revolving round the axis of .

Here y =z tan a; thus

2
’”’;“ 24+ C,

AV-—-fqrtan’az’d'v:

2
K— K: 1r—t;n——a (ﬁ:—ml’)-

Suppose &, =0, and let 7 =2, tan a; ‘thus the volume

ar tan® o 23 ',

becomes ——34- , that is,
a right circular cone is one-third the product of the area of
the base into the altitade.

180. Application to the Sphere.

Here taking the origin at the centre of the sphere we have
y'=a'—a"; thus :

,fwy‘dm=vr(a’.’c-—§) +0.

3
The volume of a hemisphere = .F wy'de = ng?’g .
3 L]

Hence the volume of

181. Application to the Paraboloid. :
Here the generating curve is the parabola, so that
’ Y = dax. ‘
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Thus V,—- Vl=1r[:4aa:dw=2a1r (x) —=.").

Suppose @, = 0, then the volume becomes 2amz?, that is
}17,':1:,, where 11{,':4@:,; thus the volume is half that of a
cylinder which has the same height, namely ,, and the same

base, namely a circle of which y, is the radius.
*

182. Application to the Solid formed by a Cycloid.
Let a cycloid revolve round its axis; here (Diff. Cal. Art.
358)

= - 2
y =+ (20z—2’) +avers™ .

The integration is best effected by putting for « and y their
values in terms of 6 (Diff. Cal. Art. 358). Thus

- fy’dx=1ra'f(0+sin0)’sin0d9.
To obtain the volume generated by a semi-c(ﬁlloid the

limits for  would be 0 and 2a; thus the corresponding limits
for 6 are 0 and .

Now fo'sinoda=-o'coso+2facosada
=—0"cos0+20sin 6+ 2 cos b,
therefore f'ﬂ'sin0d0=-r'—4;
[ )

. s # 0sin20 cos20
2[051n 0d0=f0(1—cos20) d0=—§—T— 1
therefore 2f:ﬂsin’0 d0="_;.’,
' '. 2
And f sin*0d0=2 [ sin’0d6=2.2. (Art.35.)
° 0 3
Thus the required volume : .

— 3 - i 4 —- 8 3"’ 8
=ma {w’ 44 3 +§}_qra (T_ﬁ)'
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183. This formula for the volume of a solid of revolution,
V= fm-y’d:v, like others which we have noticed, is one, the

truth of which is obvious, as soon as the notation of the Inte-
gral Calculus is understood. In the figure to Art. 128, if
PM be y and MN be denoted by Az, then my'Az is the
volume of the solid generated by the revolution of MNpP
about the axis of . ’lgﬁus 2y’ Az will differ from the volume
generated by the revolution of ADEB by the sum of such
volumes as are generated by Pp@, and the latter sum will
vanish in the limit. Thus the volume generated by the revo-
lution of ADEB is equal to the limit of Sary* A, that is, to

e

- 184. Similarly, if V denote the volume bounded by the
surface formed by a curve which revolves round the axis of y,
and by planes perpendicular to the axis of y, we shall have

V= fmv' dy.
And, as in Art. 178, we shall have
v~ Vi=["matdy.
"

185. Suppose two curves to revolve round the axis of =,
and thus to generate two surfaces, and that we require the
difference of two volumes, one bounded by the first surface
and by planes perpendicular to the axis of «, and the other
bounded by the second surface and by the planes already
assigned. Let y=¢(z) be the equation to tﬁe first curve,
and y=+(x) that to the second. Then if ¥ denote the
required difference, we have

V=[r (s @) do- [r i @) do
= [l6 @F - th @] o
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If the planes whiech bound the required volume are de-
termined by z=x, and z==x,, we must integrate between
the limits 2, and z, for . :

. 186. Buppose, for example, that a olesed curve is such
that the line y =a bisects every oxdinal:mfual:lel to the axis
of y; then we have ¢ () =a+x (@) i‘t(&b):d—x(z),
where x(x) denotes some function of x. Thus

[$@N - (¥ () =tax {2),
and V= m'ftiax (x) dez.

Suppose the absciss® of the extreme e({mini:us of the curve
are z, and z,, then the volume generated by the revolution

of the closed curve round the axis of x is mf’x(:q)dz.
£

And zr’x(as)dfc is the area of thve closed curve, so that the

0 .
volume is equal to the t of 2am into the area. This
demonstration supposes that the generating curve lies entirely
on one side of the axis of . : :

If the generating curve be the circle given by

(@—&)'+(y—k)'=d,

we have 7c® for its area, and therefore 2kc*n* for the volume
generated by the revolution of it round the axis of .

187. In a similar way if the curves .’c=¢sy), z=4{y)
revolve round the axis of y we obtain for the volume bo
by these surfaces and by planes perpendicular to the axis of y

V== [l G-+ W .

188. The method given in Art. 178 for finding the volume
of a solid of revolution may be adapted to any solid. The
method may be described thus : conceive the solid cut up into
thin slices by a series of parallel gl&nes, estimate approxi-
mately the volume of each slice and add these volumes ; the
limit of this sum when each slice becomes indefinitely thin is
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the volume of the solid requnired. Suppose that a solid is cut
up into slices by planes perpendicnlar to the axis of x; let
¢(z) be the ares of a section of the solid made by a plane
which is at a distance @ from the erigin, and let 2+ Az be
the distance of the next plane from the origin; thus these
two planes intercept a slice of which the thickness is Az, and
of which the volume may be represented by ¢ (x) Az. The
volume of the solid will therefore be the limit of 3¢ (x) Az,

that is, it will be f ¢ (2) dz; the limits of the integration will
depend upon the partiewlar solid or portion of a solid under
consideration.

189. Application to an Ellipsoid.

The equation to the ellipsoid is

2+ Y. 8.
sFgta=L

if a section be made by a plane perpendicular to the axis of =
at a distance « from the ongin, the boundary of the section is

an ellipse, of which the semiaxes ave b \/ (1—;—, and

c\/(1—§-:); hence the area of this ellipse is qrbc(l—z—:);
this is therefore the value ef ¢ (). Hence the volume of
the ellipsoid

Amabe
=£«bc-(1 ~Z) =TT
190. Application to a Pyramid.
Let theve 'be & pyramid, the base of which is any rectilinear
fi ; let A be the area of the base and /% the height.
ake the origin of co-ordinates at the vertex of the pyramid,

and the xxis of dicular to the base of the pyramid,
then the volume of the pyramid

a'{:¢ () dz.
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Now the section of the pyramid made by any plane paral-
lel to the base is a rectilinelz)a.r figure similaZto {hg basel',) and
the areas of similar fi are as the squares of their homolo-
gous sides; and « and A are proportional to homologous sides;
hence we infer that

2
$@)=554.
Thus the volume of the pyramid
AP, Ak
='}? ode——s—-

This investigation also holds for a cone, the base of-which is
any closed curve.

191. As an example we will find the volume lying be-
tween an hyperboloid of one sheet, its asymptotic cone and
two planes perpendicular to their common axis.

Let the equation to the hyperboloid be

« 2
Z-F-5+1=0,

and that to the cone

= y 2
FFmE

If a section of the former surface be made by a plane
perpendicular to the axis of 2 and at a distance 2 from
the origin, the boundary is an ellipse of which the area is

wbe (Zi: + 1) ; the section of the second surface made by
the same plane also has an ellipse for its boundary, and its

area is ra, . Therefore the difference of the areas is wrbe.

Hence the required volume, supposing it bounded by the
planes =2, and z=g,, is :

[ wbo da,. that s, wbo (z,~ ).
-‘ .
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192. Sometimes it may be convenient to make sections
by parallel planes not perpendicular to the axis of z. If a
be tie inclination of the axis of « to the parallel planes, then
¢ () sin Az may be taken as the volume of a slice and
the integration performed as before.

Formule tnvolving Double Integration.

193. We will first give a formula for the volume of a solid
of revolution. In the figure, let =, y be the co-ordinates of s,
and «+ Az, y+ Ay those of ¢. Suppose the whole figure to
revolve roundy the axis of @, then the element st will generate
a ring, the volume of which will be ultimately 27y AzAy:
this E)llows from the consideration that Az Ay is the area of
st and 2my the perimeter of the circle described by s. Hence
the volume generated by the figure BEeb, or by any portion
of it, will be the limit of the sum of such terms as 2myAxAy.
Let V denote the required volume, then

V=21rffyda;dy;

the limits of the integration being so taken as to include all
the elements of the required volume.

194. Suppose that the volume required is that which is
obtained by the revolution of all the figure BEeb; let y = ¢(x)
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be the equation to the upper curve, y =+ (<} that to the lower
curve, and let OC=w,, OH=z,. We should then integrate
first with respect to y between the limmts ﬁ:sxﬂz) and
y=¢ (x); we thus sum up all the elements Like 2nyAxAy
which are contained in the solid formed by the revolution of
the strip PQgp; then we integrate with respect to & between
the limits «, and «,, Thus to express the operation sym-
bolically

g 1$ (2)
=21rf ydxdy
oY V@

== [*[$ @Y - ¥ @] do.

The second expression is obtained by effecting the integra—
tion with respect to y between the assigned limits, and it
coincides with that already obtained in Art. 185.

195. Thus in the preceding article we divide the solid
into elementary rings, of which 27y AzAy is the type; in
the first integration we collect a number of these rings, so as
to form a figure, which is the difference of two concentric
cireular slices; in the second integration we collect all these
figures and thus obtain the volume of the required solid.

196. Suppose the figure which revolves round the axis of
z to be bounded by the curves z=¢ (y) and z=+ (y), and
by the straight lines y=y, and y=y,; then in applying the
formula for V it will be convenient to integrate first with
respect to «; thus

[YsfdW
V=2 dy dz.

In this case in the integration with respect to 2 we collect
all the elements like 27y Ay Az which have the same radius
¥, 80 that the sum of the elements is a thin cylindrical shell,
of which Ay is the thickness, g is the radius, and ¢ (y)—¢ (¥)
the height. Thus -

V=tr[" 166}~ 6Ny -
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197. As am example of the preceding formule, let it be

uired to find the volume of the solid generated by the re-
volution of the area ALB round the axis of  in the fi
already given in Art. 141. This volume is the excess of the
hemisphere generated by the revolution of SLB over the para-
boloidp generated by the revolution of ASL; the result is
therefore known, and we propose the example, not for the
sake of the result, but for illustration of the formule of double
integration.

Let 8 be the origin. Suppose the positive direction of the
axis of « to the left, then the equation to AL is y* =4a (a —z)
and that to BL is y*=4a’—4". Let V'be the required volume,

then
/dad_y2)
V= j’h f 27y dy dx.
0 _g
@

If we wish to integrate with respect to y first, we must, as
in Art. 141, suppose the figure ALB divided into two parts;

thus

Vidar_zn V(daram

V=" amyaady+ [ [* amy dudy.
0/ Vidas4az) a’0

Again, let it be required to find the volume generated by
the revolution of LDO abeut the axis of @. Let the positive
direction of the axis of @ be now to the right, then the equa-
tion to LC is y*=4a(a+2) and that to LD is y*=4a’—2a’.
Let. ¥ be the required volume, then

Uas-dan
V= [‘" . my dic dy.
o J Vitaran)

If we wish to-integrate with respect to « first, we must, as
in Art. 141, suppose the figure LDC divided into two parts;

thus -
% (20
V=f f "2 :
ofv(mw2wydydm+ N f’% my dy da.

198. Similarly, if a solid is formed by the revolution of
a. curve round the axis of y, we have

V=ff21rzdyda:.
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199. We now proceed to consider any solid.

¥

Let z, y, # be the co-ordinates of any point p of a
surface, z+Az, y+ Ay, 2+ Az the co-ordinates of an adja-
point ¢. Throu h p draw planes parallel to the co-ordi-
la.nes of (z, z) an z), through ¢ also draw planes
111:31 to the same co-ordinate planes. z.l‘hese four planes
wﬂl include between them a column, of which PQ is the base
and Pp the height. The volume of this column will be ulti-
mately s Az Ay, and the volume between an assigned portion
of the given surface and the plane of (z, y) wﬂlﬁ found by
taking the limit of the sum of a series of terms like zAzAy.
Let Vdenote this volume, then

7= fzdwdy.

The equation to the surface gives z as a function of # and
y; the limits of the integration must be taken so as to include
all the elements of the proposed solid.
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If we integrate first with respect to y,” we sum up the
columns which form a slice comprised between two planes per-

pendicular to the axis of z; thus the limits of integration with
respect to y may be functions of #, and we shall obtain

fzdy =f (),

where f(x) is in fact the area of the section of the solid consi~
dered made by a plane per};sndicu_lar to the axis of = at a
distance  from the origin. Then finally

7=[f@ds;
this coincides with the formula already given in Art. 188.

200. Application to the Ellipsoid.

Let it be required to find the volume of the eighth part of
the ellipsoid determined by the equation

2 ¥y 2L .
‘ ?+P+?—l'.
Here we have to find

ffc,\/(l—%:—%:)dmdy.

First integrate with respect to y, then the limits of y are 0
and LI, that s, 0 and J (1- g) we thus obtain the sum

of all the columns-which. form the slice between the planes
Lpl and Mgm. Now between the assigned limits

W0-3-)a-20-3)

thus . V=f-’£bc(1-§)¢¢.

The limits of @ are 0 and a; we thus obtain the sum of
T.1, C. 11
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all the slices which are comprised in the solid O4BC. Hence
Ve mabe

="

201. Suppose the given surface to be determined by
xy = az, and we require the volume bounded by the plane
of (z, y), by the given surface, and by the four planes x=x,,
x=2,, Y=Y, Y=y, Here the volume is given by

V=f:’f:”’iydzdy

A a
1
=~1a (ys’ - yxg) (za' - zx')
1
= 1a (=, — zn) (.- 3) =y + 2y, + 9, + z,,}

=1@=2) (=) (5,5 +o 4 2),

where z,, 2, 2,, 2, are the ordinates of the four corner points

of the selected portion.

202. TFind the volume comprised between the plane z=0
and the surfaces xzy=az and (z—4k)'+ (y—k)*=c"

Here we have to integrate [ f %dxdy between limits de-
termined by (z— £)* + (y — k) ="
Now fydy=~'§, and the limits of y are

k—v{¢—(x— )"} and k+ y{c* - (x—R)Y.

Thus we obtain
2k {c*— (x—&)"}.

Thus finally the required volume
2k
= zn{c" - (x—A)"} dz,

where the limits of « are A—c and k+ec.
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And
[evie ~ @@= ay o= [@-R e~ @iy} da
+4 [Vie = (@ =AY} de.
Put « — 2 =¢; thus we obtain
fevie-a) dt+hf:¢(c’—t’)dt.

The limits of ¢ are — ¢ and +c¢; therefore the result is

h—-;i; and the required volume is

This result however assumes that zy is positive throughout
the limits of the integration; that is, the circle determined by
(@—k)*+ (y—k)*=c" is supposed to lie entirely in the first
quadrant or entirely in the third quadrant. If this condition
be not fulfilled our result does not give the arithmetical value
of the volume, but the balance arising from estimating some
part of the volume as positive and some part as negative; for
example, if A and % vanish our result vanishes.

Similarly in the result of the preceding article, it is assum=
ed that ay is positive throughout the limits of the integration.

203. Instead of dividing a solid into columns standing
on rectangular bases, so that zAxAy is the volume of the
column, we may divide it into columns standing upon the
polar element of area; hence s7AfAr is the volume of the
oolurzin. Therefore for the volume ¥ of a solid we have the
formula

Ve fzrdedr.

From the equation to the surfacd "z must be expressed as a
fanction of r and 6.

For example, required the volume comprised between, the
plane z =0, and the surfaces 2’ + y* =4az and y* = 2cx~ 2"

Here z=£; and the limits of » and @ must be such as to
11—2
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extend the inte]g;ation over the whole area of the circle
Y =2cx—2a". t 7,=2ccos §; then the required volume

- fffkf:‘gdodr

w
=< f cos‘0do
Q) -

204. Required the volume of the solid comprised between
the plane of (z, y) and the surface whose equation is

_d
zg=ae ¢ .

Here, since o'+ y*' =1,
. n
V= affe_ #rdfdr.
The surface extends to an infinite distance from the origin:

in every direction; thus the limits of 6 are 0 and 2w, and
those of r are 0 and «.

”
Now Je 2 rdr==tge
. . n.o‘ 'Y
thus : fo ¢ Frdr =%,
And fd0=21r.
o .

Hence the required volume is mac’.




VOLUMES OF SOLIDS. 165

Formule snvolving Triple Integration. 3

205. In the figure to Art. 199, suppose we draw a series
of planes perpendicular to the axis of z; let 2 be the distance
- of one plane from the origin and 2+ Az the distance of the

next. These planes intercept from the column p¢PQ an
elementary rectangular parallelopiped, the volume ol?vqrhich is
AzAyAz. The whole solid may be considered as the limit
of the sum of such elements. Hence if 7 denote its volume,

V= f f fdxdydz.

206. Required the volume of a portion of "the 'cylinder
determined by the equation

@'+ y' — 2ax =0,
which is intercepted between the planes
z=xztang and z=ztanpB.
Here if y, stand for 4/(2ax— «*), we have

2a tan
V= f L pcl'vdydz
0 ~y, Jztane

% [y,
o =[F" an g tena) edudy

-

N \
=2(tang-tma)jo 2 y/(2az — o) d

3
* =2 (tan B~ tana) .

207. The polar element of plane area is, as we have seen
1 previous articles, #A@ Ar. Suppose this were to revolve
round the initial line through an angle 2, then a solid ring
would be generated, of which the volume is 27r 8in 6 A6 Ar,
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since 27 sin @ is the circumference of the circle described by
the point whose polar co-ordinates are » and 6. Let ¢ denote
*}kangle which the plane of the element in any position

es with the initial position of the plane, ¢ + A¢ the angle
which the plane in a consecutive position makes with the
initial plane; then the part of the solid ring which is inter-
cepted between the revolving plane in these two positions is
to the whole ring in the same pr(()f)ortion as A¢ is to 2m.
Hence the volume of this intercepted part is

r*8in 0 Ap AGAr.

This is therefore an expression in polar co-ordinates for an
element of any solid. ﬁence the volume of the whole solid
may be found by taking the limit of the sum of such ele-
ments; that is, 1.{ V denote the required volume,

v=| [ fr' sin 0 dpdOdr.

The limits of the integration must be so taken as to in-
clude in the integration all the elements of the proposed solid.
The student will remember that » denotes the J)istanoe of any
point from the origin, 6 the angle which this distance makes
with some fixed Iine through the origin, and ¢ the angle
which the plane passing through this gistance and the fixed
{ine makes with some fixed plane passing through the fixed
ine,

208. Suppose, for example, that we apply the formula to
find the volume of the eighth part of a sphere. Integrate
with respect to » first; we have

fr’dr=g.

Suppose a the radius of the sphere, then the limits of # are 0
and a; thus

v=[[% sn0dpae.

In thus integrating with respect to », we collect all the
elements like *sin A A6 Ar which compose a pyramidal
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solid, having its vertex at the centre of the sphere, and for its
base the curvilinear element of spherical surface, which is
denoted by a®sin 6 A¢ A6.

Integrate next with respect to 8; we have
fsin0d0= —~cosf;

the limits of @ are 0 and §5 thus’
aﬂ
V= f * dp.
In thus integrating ‘with respect to 6, we collect all the

pyramids similar to %sin0A¢ A0 which form a wedge-

shaped slice of the solid contained between the two planes
through the fixed line corresponding to ¢ and ¢ + A¢.

Lastly, integrate with respect to ¢ from 0 to g; thus

ra®
V=%
In this example the integrations may be performed in any

order, and the student should examine and illustrate them.

209. A right cone has its vertex on the surface of a
sphere, and its axis coincident with the diameter of the
sphere passing through that point; find the volume com-
mon to the cone and the sphere. _

Let a be the radius of the sphere; a the semi-vertical
angle of the come, V the required volume, then the polar
equation to the sphere with the vertex of the cone as origin
is r=2acosf. Therefore

V=f:'f:f:“°°"r= sin 8.dip 40 dr.

210. The curve r=a (1 +cos ) revolves round the ini-
tial line, find the volume of the solid generated.
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Here the required volume

=f:f:'f:“+°°"’r'sin 88 de dr

8 fr
=2";“ , (14008 6)"sin 0 do.

8ma®

.It will be found that this = <5

EXAMPLES.

If the curve t{ (¢ — 4a) = ax (x— 3a) revolve round the
axis of z, the volume generated from =0 to 2 =3a

]
is "—';1 (15 — 16 log 2).

A cycloid revolves round the tangent at the vertex;
shew that the volume generated by the curve is 7*a’.

A clycloid revolves roﬁnd ity base; shew that the
volume generated by the curve is 57*a”.

The curve y*(2a —a)=«" revolves round its asymp-
tote; shew that the volume generated is 27*a”.

The curve zy*=4a’(2a —z) revolves round its asymp-
tote; shew that thé volume generated is 47*a’.

Find the volume of the closed portion of the solid
generated by the revolution of the curve (y*—b")'=d’x
round the axis of y.

Result, 258 ™
ot 35 @

Express the volume of a frustum of a sphere in terms of
its height and the radii of its ends.

Benlt. TR 148 (r2+r)-




9.

10.

11.

12.

13.

EXAMPLES. 169

If the cugve y* = 2ma + na® revolve about thé axis of z,
find .the volume of any frustum; and shew that it
may be expressed either by

ah : nh
TR+~ k) or by mh (r'+ﬁ‘),

where A 1s the altitude of the frustam and b, ¢, » are
the radii of its two ends and middle section. Deduce
expressions for the volume of a cone and spheroid.

Find by integration the volume included between a
right cone whose vertical angle is 60°, and a sphere
of given radius touching it along a circle.

If a paraboloid have its vertex in the base, and axis in
the surface of a cylinder, the cylinder will be divided

- into parts which are as 8 : 5 by the surface of the

paraboloid ; the altitude and diameter of the base of
the cylinder and the latus rectum of the paraboloid
being all equal.

A paraboloid of revolution and a right cone have the
same base, axis, and vertex, and a sphere is described
upon this axis as diameter; shew that the volume in-
tercepted between the paraboloid and cone bears the
same ratio to the volume of the sphere that the latus
rectum of the parabola bears to the diameter of the
sphere.

Find the whole volume of the solid bounded by the

surface of which the equation is '
@ y 2
atpta= 1.
Result. ST.
Find the whole volume of the solid bounded by the
surface of which the equation is
(' + ¥ +2")" = 27a’zyz.
Result, 2a"

2
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14.

15.

16.

17.

18.

19.

EXAMPLES.

Find the volume of the solid formed by the revolution
of the curve (z* + ¥")' = a'2* + b about the axis of =,
supposing & greater than 4. Shew what the result

mes when a = b. '

g T + 22t
Beolt. 7§ (26" +88) a + s log oasla

Determine the volume of the solid generated by the re-
volution of the curve («*+y*)*=a's"+b%" about the
axis of y, supposing a greater than 5. Shew what
the result becomes when a=2a.

mat (@)

24/((1’-1)‘)s a

Result. "E’ (28* + 30" b+

Find the volume of the solid formed by the revolution
of the curve (y* +z%)* =4’ (¢' — y*) round the axis of z.

Besult. ™% {lz log (14 42) — g}.

A paraboloid of revolution has its axis coincident with
a diameter of a sphere, and its vertex outside the
sphere; find the volume of the portion of the sphere
outside the paraboloid.

t ]
Reault, TE, whero  is the distance of the two

lanes in which the curves of intersection of the sur-
ces are sitnated. .

Find the volume cut off from the surface
k
i + Z =922
c b

by a plane parallel to that of (y, 2) at a distance a
from it, Result. a4/ (bec).

A quadrant of an ellipse revolves round a tangent at
the end of the minor axis of the ellipse; shew that
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the volume included by the surface formed by the

curve is
2
1'? (10 — 3m). .
20. Find the volume enclosed by the surfaces defined by

the equations
L+yt=c, Z+y'=ax, 2=0,
illustrating by figures_the progress of the summation.
3ma*
‘ _let. '3—26' .
21. If S be a closed surface, dS an element of S about a
point P at a distance » from a fixed point O, and
¢ the angle which the normal at P drawn inwards

makes with the radius vector OP, shew that the
volume contained by the surface

=34 [rcos ¢pdS,

f'ghe summation being extended over the whole sur-
ace.

Taking the centre of an ellipsoid as the point O,
apply this formula to find its volume, interpreting geo-
metrically the steps of the integration.

22. Find the value of f f fx’ehdydz over the volume of an
' 47ra’be
15

28. Determine the limits of integration in order to obtain
-the volume contained between the plane of (z, ) and
the surface whose equation is

Az + Bey + Cy' — Dz — F =0,
24. State the limits of the integration to be used in apply-
ing the formula f f fdx dy dz to find the volume of a

closed surface of the second order whose equation is
a@® + by* + ¢z + a'yz + bzz + Czy =1.

ellipsoid. Result,
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25. State between what limits the integrations in

ff e dy da

- must be performed, in order to obtain the volume
contained between the conical surface whose equa~
tion is

g=a—(="+y"),
and the planes whose t;llz.tions arez=2and 2 =0;
. and find the volume by this or by any other method.

3
Result. ?g——.

26. State between what limits the integrations must be
taken in order to find the volume of the solid con-
tained between the two surfaces cz=ma'+ny* and
3 =ax + by ; and shew that the volume is q—'g when

m=n=a=b=1.

27. A cavity is just large enough to allow of the complete
revolution of a circular disc of radius ¢, whose centre
describes a circle of the same radius ¢, while the plane
of the disc is constantly parallel to a fixed plane, and
perpendicular to that of the circle in which its centre
moves. Shew that the volume of the cavity is

2-31' (8 +8).

28. The axis of a right cone coincides with the generatin
line of a cylinder; thé diameter of both cone an
cylinder is equal to the common altitude; find the
surface and volume of each part into which the cone is
divided by the cylinder.

Results.
Surfaces, 4wv5;3415a, and 2w45:3415a,;
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Volumes, &7F 279:./3 —64 o 46427 s;/9. =27 .
where a is the radius of the base of the cone or

cylinder.

29. Find the volume of the cono-cuneus determined by
2,2
N 2+ gz—"{- = ,
which is contained between the planes £ =0 and z =a.
Result, 2%,
_ - 2
30. A conoid is generated by a straight line which passes
through the axis of z and is perpendicular to it. Two
sections are made by parallel planes, both planes
being parallel to the axis of z. Shew that the
volume of the conoid included between the planes is
equal to the product of the distance of the planes into
half the sum of the areas of the sections made by the
planes, :
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CHAPTER IX.

DIFFERENTIATION OF AN INTEGRAL WITH RESPECT TO ANY
QUANTITY WHICH IT MAY-INVOLVE.

211. It is sometimes necessary to differentiate an inte-
gral with resEect to some guantlty which it involves; this
question we shall now consi

b
Required the differential coefficient of f ¢ (x) dz with

respect to b, sngposing ¢ (z) not to contain i, and a to be
mdependent of

Let u=fb¢(w)d:c;

suppose b changed into & + Ab, in consequence of which
u becomes u + Au; thus

utdu=[’ "4 (@) do;

' b+Ab b
therefore Au= fa () da — f $ () do

b+Ad

Now, by Art. 40,
b+4Ab
[776 @) do= 8 5+ 003),
where 0 is some proper fraction ; thus

22 6+ 00).
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Let Ab and Ay diminish without limit; thus
du
=2 0)
212. Similarly, if we differentiate » with t to a,

supposing ¢ (z) not to contain @, and & to be independent
of a, we obtain

du
Za=—% (-

213, Suppose ¢ (x) to contain a quantity ¢, and let it
b

be required to find the differential coefficient of f ¢ (@) do
a

with respect to c, supposing @ and 4 independent of c.

Instead of ¢ (x) 1t will be convenient to write ¢ (z, c),
so that the presence of the quantity ¢ may be more clearly
indicated ; denote the integra.(ll by u, thus

u=f:¢ (®, o) da.

Suppose ¢ changed into ¢+ Ac, in consequence of which u
becomes u + Aw; ‘thus

u+Au=fb¢(z,c+Ac) dz;

»

. b ]
therefore Au= [ ¢ (z,c+Ac)dz — f ¢¢ (2, c) dz

= [ @ o+80) - ¢ (@9} dz;

Au_ [*$(z,0+Ac) — ¢ (2,0)
KE=L Ac dz.

thus

Now by the nature of & differential coeﬁicient we have
¢ @0+ A) = (3,0) _ dp (2,)
Ac | d TP
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where pis a ?rnantity which diminishes without limit when
Ac does so. Thus we have

Au_ [*dé (z,0) b
Ao ¢—__dc dx-l-j‘pd’l}.

When Ac is diminished . indefinitely; the second integral
vanishes ; for it is not greater than (b — a)p’, where p’ is
the greatest value p can have, and p' ultimately vanishes.

Hence proceeding to the limit, we have
du _ [4dé (z,c)
%=] b5

214. Tt should be noticed that the preceding article sup-
ses that neither a nor 5 is infinite ; if, for example, b were
" nfinite, we could not assert that (b— a)p’ would necessarily

vanish in the limit, :

215. We have shewn then in Art, 213 that
d b )
d:f“qb(z,c)dwfa%qz...... ...... ).

We will point out a useful applicatioﬁ of this. equation.
Suppose that -(z,c) is the function of which ¢(z,¢) is
the differential coefficient with respect to «, and that x(z, c)

is the function of which -@LS%’—O)- is the differential coefficient
with respect to ; thus (1) may be writteri

d“,’gy 0) _ d‘\}"é:, 0) =x (b’ c) -x (a, c) ....... (2),

let us suppose that & does mot occur in ¢-(z,c), and that
a is also independent of 4 ; then (2) may be written :

i‘%’&) O (By0) sverreesmneivensivnes (8),

where C depotes terms which are independent of 5, that
is, are constant with respect to b, Hence as b may have
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any value we please in (3), we may replace b by z, ‘and
write

2@ =& o).

This equation may be applied to find x (x,c); as the
constant may be introduced if required, we may dispense
with writing it, and put (4) in the form

) d
[28:9 3= [4 @, de.
1
For example, let ¢ (2, ¢) =iy then
' de 1. _
fcﬁ(m,c)da:=fm=z n'cx,

b ()2 ()

2cz*
=i+ ) de.

Thus from knowing the value of H;J::,a—:, we are able to

deduce by differentiation the value of the more complex
. 2ca’
mtegral f m’ dx.

b
216. Required the differential coefficient of f & (z,0) de
with respect to ¢ when both 4 and a are fanctions of c.

Denote the integral by u; then %‘ consists of three terms,
one ariaix;g from the fact that ¢ (z, ¢) contains ¢, one from
the fact that & contains ¢, and one from the fact that a
contains ¢

1. I. Oy 12
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Hence by the preceding articles,

du_j‘ Q(z, dz+ du db duda
v B &%t do

=f:i%—c—)¢h+¢(b,c)%—¢(a,c) %

217. 'With the suppositions of the preceding article we

may proceed to ﬁnd% . By differentiating with respect to c

]
the term f adi(g:;c) dx we obtain

b d'¢ (x,c) de (b,c) db d¢ (a,c) da -
L ¢ Tt %_Tz%'

From the other terms in “Zk we obtain by differentiation

5 46,9 dé (b,0) db
Ge) gat g (dc) p A

— (a0 )‘f;‘i dd’é:,c) (@)'_dcﬁ(a,c) da

de de de’

Thus i': fbd’d’d(;"’)dm
r00 5 809 (2], 00 D
EPAY. I ICE YL e TCLY )

Similarly %ﬁ may be found and higher differential co-
efficients of  if required.
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218. The following geometrical illustration may be given
of Art, 216. & TRe

Let y=¢ (z,c) be the equation to the curve APQ, and
y=¢ (2, ¢ + Ac) the equation to the curve 4'P'Q'.

Let OM=a, - ON=3,
MM'=Aa, NN'=Ab,

Then » denotes the area PYNQ, and » + Au denotes the
area PM'N'Q. Hence

Au=PpgQ + QNN'g — PMM'p,

Au_PpgQ  QNN'q PMM'p.

and Ac™  Ac Ac Ac

It may easily be seen that the limit of the first term is the

limit of f ""’(“”"’*"‘Acg —9®9) g that the limit of the

second term is the limit of ¢ (b: c) %, and that the limit

of the third term is the limit of ¢ (a,¢) 22. This gives the

result of Art. 216.
12—
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219, Example. Find a curve such that the area between
the curve, the axis of #, and any ordinate, shall bear a con-
stant ratio to the rectangle contained by that ordinate and the
corresponding abscissa.

Suppose ¢ (z) the ordinate of the curve to the abscissa = ;
then f ¢ (x) dx expresses the area between the curve, the
axis of 2, and the ordinate ¢ (c): hence by supposition we

must have
[[#@ 2=,

where n is some constant. This is to hold for all values of ¢;
hence we may differentiate with respect to ¢; thus

() =29 (c) c¢1"(c) ;
therefore e’ (c) = (n -1)¢(c),
¢ _n—1
wd TONE
By integration log ¢ (c) = (n — 1) log ¢ + constant ;
thus é () = Ao, I
and ¢ (z) = A=,

which determines the reqmred curve.
220. Find the form of ¢ (z), so that for all values of ¢
[=w@re
[[@ra

.
ﬂ

By the supposition
[=@pa=2 ‘(@) e
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Differentiate with respect to ¢; thus
b =3 [ B +S14 0N

ths o(1-1)ip@p=;] Bl

Differentiate again with respect to ¢;

s (12 p@r+ze(1-)s0#0=BE;

hence (1 - —) é (c) + 2 (1 - -) () =

$0_ 2-n 1
¢(c) 2(n—1)c’

therefore

Integrate; thus

log ¢ (c) = ) log ¢ + constant ;
2-
therefore ¢ (c) =Ac (n_—lr,
where A4 is some constant; thus we have finally
‘ 2-n
¢ (z) = A=Y,

This is the solution of a problem in Analytical Statics,
which may be enunciated thus. The distance of the centre
of gravity of a segment of a solid of revolution from the

vertex is always %th part of the height of the segment; find
the generating curve. The required equation is y = ¢ ().
¢ (z) do

221. Find the form of ¢ (x) so that the mtegral J(c—2)

may be independent of c.
Denote the integral by u, and suppose & =cz; thus
_[b@d_ e (es)ds
'Ve—-x) Jo N(1-¢2)
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Since u i to be independent of ¢, the differential coefficient
of % with respect to ¢ must vanish. Now

o [Serire
= o V)

de
—f $(e) + 2ag@)
2¢/(c—x)

This last integral then must vanish whatever ¢ may be;
hence we must have

$(@) +22¢/(z) = 0;

¢l@)__ 1.
therefore YOS
therefore log ¢ (z) =— % log = + constant,
therefore ¢-(z) =V

This is the solution of a problem in Dynamics, which may
be thus enunciated. Find a curve, such that the time of
falling down an arc of the curve from any point to the lowest
point may be the same. If s denote the arc of the curve
measured from the lowest point, & the horizontal abscissa of
the extremity of s, then we have

=¢ (z) and s=244z;
so that the curve is a cycloid (Art. 72).

MISCELLANEOUS EXAMPLES.

1. If the strai ht line SP,P,P, meet three successive revo-
lutlons 0 man ar spiral, whose equation is
r=ad’ in the po > Py ﬁnd the area included
between P,P,, PP,, and the two curve lines PP, PP,

Result. Zm( ‘P‘).
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Find the area of the curve y*—axy’+2*=0.

a2
Result. TR

Find the area of the curve 2™ + y™ = a* (zy)™", where n
is a positive integer.

Result. Ifnisaneveninteger;—:;ifnisanodd
i a'w '
mteger T.

A string the length of which is equal to the perimeter
of an oval is wound completely round the oval, and
an involute is formed by unwinding the string, begin-
ning at any point ; shew that when the length of the
involute is a maximum or a minimum the length of
the string is equal to the perimeter of the circle of
curvature at the point from which the unwinding
begins.

Find the portion of the cylinder 2"+ ' —rz=0 inter-
cepted between the planes

azx+by+cz2=0 and a'z+by+cs=0.

Result aw (@ —a)r
. 80 .

Find the volume of the solid bounded by the para-
boloid 3+ 2'=4a(x+a) and the sphere z’+y’+zP =c,
supposing ¢ greater than a.

Result. 2ma (cj—% .
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CHAPTER X.

ELLIPTIC INTEGRALS.

229, Tae integrals | i df 7 [va-esinta)ae,

— c*sin?

, are called elliptic funo-

and f (1+a s’ 0) ¥/(1 - sin’ 0)
tions or elliptic integrals of the first, second, and third order
respectively ; the first is denoted by F'(c, 6), the second b

E (c, 0), and the third by II (¢, @, §). The integrals are aﬁ
supposed to be taken between the limits 0 and 6, so that they
vanish with @; 6 is called the amplitude of the function.
The constant ¢ is supposed less than unity; it is called the
modulus of the function. The constant a, which occurs in the
function of the third order, is called the parameter. When

the integrals are taken between the limits 0 and =, they

are called complete functions; that is, the amplitude of a
complete function is g

223. The second elliptic integral expresses the length of
a portion of the arc of an ellipse measured from the end of
the minor axis, the excentricity of the ellipse being the
modulus of the function. From this circumstance, and from
the fact that the three integrals are connected by remark-
able properties, the name elliptic tntegrals has been de-
rived.
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224. The subject of elliptic integrals is very extensive;
we shall merely give a few of the simpler results, and refer
the student for fuller investigations to Hymers's Integral
Calculus, or to the writings of iegendre, Jacobi and Abel.

225. If 6 and ¢ are connected by the equation
F(c’.o) + F("? ¢) =F(c, l")’
where p i8 a constant; then will
cos 8 cos ¢ — sin @ sin ¢ 4/(1 - ¢*sin’ u) = cos p.

Consider 0 and ¢ as functions of a new variable ¢, and
differentiate the given equation; thus

1 do 1 ¢
VA—=c'sin'0) dt + N1 —c'sin’ @) di

Now as ¢ is a new arbitrary variable, we are at liberty to
assume

=0......(1).

do g
E—/\/(l—c sin® 4),

thus from the equation (1)
d$ _ ot
E—-V(I—c’sm ®).

Square these two equations and differentiate ; thus

a0 ¢

o =— ¢ sinfcos 6, T=-—c’sin¢co&¢;

therefore %i) = —%’ (sin 20 £ sin 2¢).
Let 6+ ¢=+ and 0—¢p=7x; thus

d’ . a: .
—(—l—t,—=—c'sm1[roosx, %=—0’8me9‘?-

Also %%=(%.—(§—f>.=—c’sim}rsinx;
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2y X
at - dt '
therefore o e cot x, T cotyr;
dt de “dt dt
therefore
dy d dx\ _d —
7 (log dt) log siny, % (log dt)—d—tlogsm«[r,
therefore log d‘f log sin i + constant,
therefore ‘g’ Asiny
.................. (2),
and similarly, ‘% = Bsinyr
where 4 and B are constants.
: dy
Hence Asiny 2 d =Bsin{y —- c;f )
therefore Acosy=BcosY+C.curunirrenanen. (3).

Now from the original given equation we see that if ¢ =0
Fle,0)=F(c p);
therefore then O0=p and x=vY=p;
thus from (3) (A—B)cospu=0C;
thus Acos(0—¢)=DBcos(0+¢)+(4d—B)cospu;
therefore
(4 — B) cos 8 cos ¢ + (A +B) sin Osin ¢ = (4 —B) cos p...(4).

In (2) put for %” its value

V(1 —c*sin’ 0) — /(1 — ¢* sin* @),
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SR

its value
N (1= ¢ sin*d) + 4/ (1 — ¢' sin*¢),
and then suppose ¢ =0; thus
N(1—=c'sin*p) —1=Asinp,
and ¥ (1 —¢* sin’p) + 1 = Bsin .
Substitute for 4—Band 4+ Bin (4);
thus  cos @ cos ¢ — sin @ sin ¢ 4/(1 — ¢* sin' p) = cos p.

and for

226. The relation just found may be put in a different
form. Clear the equation of radicals; thus

(cos‘o cos ¢ — cos w)* = (1 — ¢* sin’p) 8in®é sin*¢;
therefore
008’6 + cos” ¢ + cos”u — 2 cos 6 cos ¢ cos u
=1-—¢"sin’u sin’@ sin*¢.
Add cos’¢ cos’u to both sides and transpose; thus
(cos @ — cos ¢ cos u)*
=1-—cos’¢ — cos’u + cos*p cos*u — ¢* sin* sin’f sin’¢p
=sin*¢p sin’u (1 — ¢* sin*f) ;
therefore cos § = cos ¢ cos p + sin ¢ sin p 4/(1 — ¢* sin*6).
The positive sign of the radical is taken, because when
6 =0, we must have ¢=p.

227. 'We shall now shew how an elliptic function of the

first order may be connected with another having a different -
modulus.

Let F(c, 6) denote the function ; assume
sin 2¢

ts‘no=¢:+<:oas2<;b;
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1 do 2(1+ccos2¢)

therefore o050~ (o+cos2g) ’
do 2(l+ccos2¢)
therefore dp 1+2ccos2¢+C "
. ¢ 8in’ 2¢
[ POR Y, S
And 1-c'sin’@=1 T+ 20 cos2$ 7 &
14 2ccos2¢ + ¢’ cos’2¢
T 1+42ccos2¢p+c
therefore

f 2 (14 ¢ cos 2¢) 5/(1+2ccos2¢+c’)&ﬁ
Vil - c’sm@) 14 2¢ cos2¢ +c' 1+ccos2¢

2fv(l+2ccos2¢+c 1+cf\/ - @xop sm¢}.
+

No constant is added, because ¢ vanishes with 6. Thus

Fle,0) = F(cl, ¢), where
i 4 __ s8in2¢
c, ={+e ),andta nf = rTTITE

The last relation may be written thus,
¢ sin @ = sin (2¢ — 6).
‘We may notice that ¢, is greater than ¢, for
g4
¢ c(l1+¢)?’
-and since ¢ is less than unity, 4 is greater than ¢ (1 +c¢)".

If ¢= —, then 6 =; thus

2

3o F (e N=Flom= 27 (e, 3).
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228. We will give one more proposition in this subject,
by establishing a relation among Elliptic Functions of the
second order, analogous to that proved in Art. 225 for func-
tions of the first order.

If  cos @ cos¢—sin@ sin ¢ +/(1 — ¢* sin’u) = cos u,
then will
E(c, 0) +E(c, $) — E (c, p) =" sin 0 sin ¢ sin p.

By virtue of the given equation connecting the amplitudes,
¢ is a function of ; thus we may assume

E(c, 6) + E(c, §) — E (¢, 1) = f(0).
Differentiate ; thus

FO)= V(1= sin'6) + (1 — & sin’$) 58

_cosf—cos cosp cos ¢ —cos § cosp dp

sin ¢ sin p 8in @ sin u do
(by Art. 226),
_ @{sin’0 +sin"$ + 2 cosf cos § cos u} 1
d 2sinfsingsinp

But sin’0 + sin’¢ + 2 cos 8 cos ¢ cos u
=1+ cos'u + ¢’ 8in*0 sin*¢p sin’u ;

thus £/(6) = *sin p (50050 §) (Si“;o"in $)

Therefore, by integration
f(6) =csin 8 sin ¢ sin p.

No constant is added, because f(f) obviously vanishes
with 6. :
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MISCELLANEOUS EXAMPLES.

1. Find the whole volume of the solid bounded by the
surface of which the equation is

2azy
davErry IR |
Result. W—:s; supposing the radical restricted to the posi-
tive sign.
2. Find the whole volume of the solid bounded by the sur-
. face of which the equation is

RENG

Result.

4mabe
35 °

3. Prove that the volume of that portion of the solid
bounded by the surface whose equation is

22+ ay' =2 (a'— 27,

whigh lies on the positive side of the plane of xy is
8ma

o1 °
. dS
4. TFind the value of f o) where dS denotes the element

of the surface of a sphere, and » the distance of this
element from' a fixed point without the sphere; the
integration being extended over the whole surface of

the sphere.
27a <1 1 .
Result. P ?z_ % { C=a~ ¥ a)""} ; where a is the
radius of the sphere, and ¢ the distance of the fixed

point from the centre of the sphere.

5. A cylinder is constructed on a single loop of the curve
r=acosnf having its generating lines perpendicular
to the plane of this curve; determine the area of the
portion of the surface of the sphere «*+ y*+2'=a’
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which the cylinder intercepts; determine also the
volume of the cylinder which the sphere intercepts.

Results. The ar =é§(’—; - 1);
the volume = e (7—r - 2) .

Find the volume of the solid generated by the revolution
of the closed part of the curve

' —Baxy +y*'=0

round the line z + y =0. 87'a®

346 °
If the axes of two equal circular cylinders of radius a

intersect at an angle 8, the volume common to both is

16 o .
3 g’ and the surface of each intercepted by the

Result.

. 8a

other is smB"

The centre of a variable circle moves along the arc of a
fixed circle; its plane is normal to the fixed circle,
and its radius equal to the distance of its centre from a
fixed diameter; find the volume generated ; and if the
solid so formed revolve round the fixed diameter, shew
that the volume swept through is to the volume of the
solid as 5 to 2.

The centre of a regular hexagon moves along a diameter
of a given circle (radius = a), the plane of the hexagon
being perpendicular to this diameter and its magni-
tude varying in such a manner that one of its diago-
nals always coincides with a chord of the circle; shew
that the volume of the solid generated is 24/3a’.
Shew also that the surface of the solid is

a* (2r + 3 v3).
Prove that
i L 1
fﬂN/(2ax-x,)V(a’_zf)=§dF(o’ "2-), Whel'e- 0=_3..
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CHAPTER XL

CHANGE OF THE VARIABLES IN A MULTIPLE INTEGRAL.

229. WE have seen in Art. 62 that the double integral

b 8 B b
[/4)(:::, y) dx dy is equal toff ¢ (z,y) dy dz when the
limits are constant, that is, a change in the order of integra-
tion produces no change in the limits for the two integrations.
But when the limits of the first integration are functions of
the other variable, this statement no longer holds, as we have
seen in several examples in the seventh and eighth chapters.
We give here a few additional examples.

230. Change the order of integration in

, f:f:"“’""’(p (@, 3) dwdy.
Y]

B— »

N
),

A

The limits of the integration with respect to y here are
y=0 and y=4/(a’—2"); that is, we may consider the

o O — R




CHANGE OF THE VARIABLES,: &c. 193

integral extending from the axis of = to the boundary of a
circle, having its centre at the origin, and radius equal to a.
Then the integration with. respect to 2 extends from the axis
of y to the extreme point 4 of the quadrant. Thus if we
consider z=¢ (x, y) as the equation to a surface, the above
double integral represents the volume of that solid which is
contained between the surface, the ]ilane of (z, y), and a line
moving perpendicularly to this plane round the boundary
OAPBO. B

It is then obvious from the figure that if the integration
with respect to  is performed first, the limits will be z=0
and z=4/(¢"—%"), and then the limits for y will be y=0
and y=a. Thus the transformed integral is

[[* "¢ ndyan.

231. Change the order of integration in

T

fjf:am:p (r, 6) rdb dr.

0 X -
A

Let 0A4A=2a, and describe a semicircle on 04 as dia-
meter. Let POX =0, then OP=2acosf. Thus the double
integral may be considered as the limit of a summation of
. values of ¢ (r, §)'r AO Ar over all the area of the semicircle.
Hence when the order is changed we must integrate for 6 from 0

to cos"‘;;a, and for » from 0.to 2a.

T. I C. 13
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Tlas the trarsformed intezral is
j"’-"‘x" T, 8 rdrdfd.
[ ]

232. Change the order of integration in

f-f: ¢z, y, dzdy.
4

r!

|

X
A

o (o4
The integration for y is taken from y =2 to y =34
e integration for y y=gp toy=3a—=

The equation y-f—a belongs to a parabola OLD, and

y=38a—-z toa straiﬁl:t line BLC, which passes through Z,
the extremity of the latus rectum of the parabola.

Thus the integration may be considered as extending over
the area OLBSO. Now let the order of integration be
changed; we shall have to consider separately the spaces
OLS and BLS. For the space OLS we must integrate
from =0 to £=24/(ay), and then from y=0 to y=a;
and for the s BLS we must integrate from z=0 to
om8a—y, and then from y=a to y=38a. Thus the trans-

formed integral is
f:ﬁ Y 6 (@, ) dydo + f:’fo “-fqb (z, y) dy da.
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233. Change the order of integration in

[[Ts@naa

Here the integration with respect to y is taken from y =2
to y=2(2—x). The equation y=x represents a straight
line, and y=x(2—a) represents a parabola. The reader
.will1 find on examining a figure, that the transformed inte-
gral is

f ' / " b (e y) dyda
oJiya- I
. 234, Change the order of integration in
a fz+3a
[ @

(a3-29)

Here the integration with respect to y is taken from
y=w(a'—2") to y=x+2a. The equation y=y(a'—2)
reEresents a circle, and y =4 2a represents a straight line,
The reader will find on examining a figure, that when the
integration with respect to z is performed first, the integral
must be separated into three portions; the transformed in-
tegral is

f:f:(as-,s)(b (= 9) dydm.;.f:“f: ¢ (x, y) dy dz
3a ra
[ e

235. Change the order of integration in

b
[ ¢@sdady.
[
Here the integration with respect to y is taken from y=0
to y= b—% The equation y=b—_£; represents an hyper-

bola; let BDE be this hyperbola, and let O4=a. Then
the integration may be considered as extending over the

13—2
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¥]
B
D
E
o — X

space OBDA. Let the order of the integration be changed;
we shall then have to consider separately the spaces OADC
and CDB. For the space 04DC we must integrate from

=0 to =a, and then from y=0 to y=ﬁ;, For the
space CDB we must integrate from =0 to z=___b (ly_-'/) ,

and then from y = Z—i—‘; to y=1. Thus the transformed in-

tegral is
e Ty M
T v :
[ ¢(m,y)dya+£+fo $ (z, 9) dy do.
236. Change the order of integration in

h fe=ux
[ ¢ deay

h h = —c'_ .‘ i i
where Nth The transformed integral is

v .ﬁf‘“’”’y)dyd“f;ﬁ«#(w,y)dﬂw.




IN A MULTIPLE INTEGRAL. 197

237. Change the order of integration in

f :f :f :4' (, ¥, 2) dow dy dz.

The integration here may be considered to be extended
throughout a pyramid, the bounding planes of which are
given by the equations

2=0, z=y, y=2, z=a.

The integral may be transformed in different ways, and
thus we obtain

[ Ts@ynaama

or [T]s@nnayda,
or fJ :¢ (@, y, 2) ds dy da,
or ff "¢ (@, g, 2) de da dy,
or | f.f f¢ (%, 9, 2) de ds dy.

These transformations may be verified by putting for
(@, y, z) some simple function, so that the integrals can
actually obtained'; for example, if we replace ¢ (z, y, 2)

by unity, we find % as the value of any one of the six
forms. : :

238. These examples will sufficiently illustrate the sub-
ject; it is impossible to lay down any simple rules for the
discovery of the limits of the transformed integral. It is not
absolutely necessary to draw figures as we have done, for the
figures convey no information which could not be obtained by
reflection on the difféerent values which the variables must
have, in order to make the integration extend over the range
indicated by the given limits. But the figures materially
assist in armving speedily and correctly at the result.
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‘We now proceed to the problem which is the main object
of the present chapter, namely, the change of the variables in
a mgurit]zpk integral. We begin with the case of a double
integral.

239. The problem to be solved is the following. Required

to transform the double integral [ j Vdx dy, where V is a

function of z and y, into another double integral in which the
variables are u and v, the old and new variables being con-
nected by the equations

¢, (z, y, u, v) =0, ¢ (2, 9,4, v)=0...... (1).

‘We suppose that the original integral is to be taken be-
tween known limits of y and z; as we integrate with respect
to y first, the limits of ¥ may be functions of . Of course
while integrating with respect to y we regard z as constant.

‘We first transform the integral with respect to y into an
integral with respect to ». This is theoretically very simple ;
from equations (1) eliminate » and obtain y as a function of

z and v, say
Y=Y (@, v)eeeeueeces 4esessaassrene @),

dy = (z, v) dv,

where ¥ (2, v) means the differential coeﬂi;:ient of y (z, v)
with respect to v.

Substitute then for y and dy in f V dy, and we obtain

from which we get

f V4 (z, v) dv, where V, is what V becomes when we put

for y its value in V. Hence the original double integral
becomes

f f V¥ (z, v) dz dv.

Thus we have removed y and taken v instead. As the
limiting values of y between which we had originally to
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integrate are known, we shall from (2) know the limiting
values of v, between which we ought to integrate. It will be

observed, that in findin dy from (2), we supposed z constant ;
8 7» ppo

this we do because, as already remarked, when we integr#te
the proposed expression with respect to ¥ we must consider =
constant.

The next step is to change the order of the above integra-
tions with respect to « and v, that is, to perform the integra-
tion with respect to « first. This is a subject which we have
already examined ; all we have to do is to determine the new
limits properly. Thus supposing this point settled, we have
changed tﬁ original expression into

fzw@w@a

It remains to remove « from this expression and replace it
by u. We proceed precisely as before. From equations (1)
eliminate y, and obtain x as a function of v and u, say

=% (0, %)eeereenienens ceeereenens (8),
from which we get
dz =y (v, u) du,

where x'(v, 4) means the differential coefficient of x (v, w)
with respect to .

Substitute then for 2 and dz, and the double integral be-
comes

ﬂww@@xm@@a,

where V' is what ¥, becomes when we put for z its value in
V.. Thus the double integral now contains only u and v,
since for the 2 which occurs in 4’ (», v) we suppose its value
substituted, namely, x (v, ). Moreover since the limits
between which the integration with respect to « was to be
taken have been already settled, we know the limits between
which the integration with respect to « must be taken.
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We have thus given the complete theoretical solution of
the problem ;. it only remains to add a practical method for
determining ' (z, v) and x' (v, u) ; to this we proceed.

‘We observe that ¥ (z, v) or g‘% is to be found from equa-

tions (1) by eliminating u, considering = constant; the fol-
lowing is exactly equivalent; from (1)

4%, dy | d$, du
dy dv * du dv

dbdy  dbydu  db, _

By T dudo T

do, _
+dvl—0’

du

db,dy b, db,dy b,
dydv dv_dydv dv

ad, dé, -’
du du

Eliminate

d$, dp, _dp, dé,

therefore iy— =30 du_ du o

do~ T 35, 35,95,
du dy dy du

This then is an equivalent for ' (z, v), St;pposing that after
the differentiations are performed we put for y and w their
values in terms of « and v from (1).

Again, x' (v, u) or gz is to be found from' eciuations (1) by
eliminating y, regarding v as constant; the following is
exactly equivalent; from (1)

Cdbde e dy 36, _
de du " dy du ' du

d,do , dydy 4, _
dedu dydu’ du
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From these equations by elimin‘a.ting % we find

This then is an equivalent for y’ (v, u).
d$, db, _dé, d¢,

Thus ¥ (2, o) X' (&, 4) = 33, Z:, Z;. g’,
dy de dx dy
Hence the conclusion is that
d, dp, _d, ds,
ffV&vdy=ffV£Tg;’_;‘zg£’dvdu ............ @),
“dy de dx dy

where after the differentiations have been performed, we must
ut for z and y their values in terms of % and v to be found
f 011]; (1); also the values of & and y must be substituted
in
An important particular case is that in-which « and y are
given explicitly as functions of % and v; the equations (1)
then take the form

z—f, (u, v) =0, y—f, (u,v) =0 ......... (5).
1 — d¢l_ d¢l_. g J—
Here %—1: ?&"Q,' Z'E'"O’ %—1:

and the transformed integral becomes ‘
@, @f, _ 4 4,
[[¥ (& %3 &) dode

where we must substitute for  and y‘ their values from'
(5) in V.



202 CHANGE OF THE VARIABLES

Thus we may write

fdemdy=ffV(§%%—%%)dvdn ......... (6).

The formula in (4) and (6) are those which are usually
given; they contain a simple solution of the proposed problem
in those cases where the limits of the new integrations are
obvious. But in some examples the difficulty of determinin
the limits of the new integrations would be very great, an
to ensure a correct result it would be necessary instead of
using these formule, to carry on the process precisely in the
manner indicated in the theory, by removing one of the old
variables at a time.

240. The following is an example.
b
Required to transform f a/ V da dy, having given
ovo

y+a=uyu, y=uv.
From the given equations we have
z=u(l-v), y=uv;
dz _ dz _ dy_ dy_
thus E—l—'v, -d—-”——‘u, z{‘—?}, dv—u,
dedy dzdy _ =
therefore E%—%%—u(l—v)+uv—u.

Hence by equation (6) of Art. 239, we have

f:f: Ve dy= [ Vudodu;

but we have not determined the limits of the integrations with
respect to  and v, so that the result is of little value. We
wilY now solve this example by following the steps indicated
in the theory given above.
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From the given equations connecting the old and new
variables we eliminate %; thus we have

y= 1’_’? , therefore dy =0 a:v)“

to the limits y=0 and y =35, correspond respectwely v=0

and v=3s thus

+

b
a rb e b3z
Vdzdy= V,z (1 —v)"dxdv.
fJ; z dy fofo !a:(‘ v) v
‘We have now to change the order of integration in
b

f mV,ax(l— ) dzx d.
[}

0

This question has been solved in Art. 235; hence we obtain

fafdewdy=f“fb_%Ka:(l—v)"dmdv
b(l—v)

_f“" Va:(l—v)“’dvdz+/ [ V.2 (1 —v)* dv da.
P+a
‘We have now to change « for » where
z=u(l-—0), #=1 -v;

thus we obtain

o i : 2

fb” -"V’udvdu+/ fV'udvdu,

[ o —b- [}

a+d
since to the limits 0 and a for 2 correspond respectively 0 and

i 2_ for u, and to the limits 0 and b= g correspond
- z v

respectively 0 and g for u.
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If a=5 the transformed infegml becomes

1 a

= 1z
f V' do du + fl V'udo du.
3

ovo []

If @ is made infinite, these two terms combine into the
single expression .

flfa V'u dv du.
ovo

241. Second Example. Required to transform

fo f: ~Vizdy,

having given y + & = u, y=uv.
Perform the whole operation as before; so that we put

L BN .
y=1= dv (1—v)'"

When y =0 we have v=0, and when y =c— 2 we have

v= °‘T”° . Thus the integral is transformed into

=%

' f[TV,m (1 —v)? dedv.
oV o
Now change the order of integration ; thus we obtain

f:[:a-ﬂ V,z(1—v)? dvdz. °

Now put =% (1 —v) and %=l—o; the hmlts of u
will be 0 and c. Hence we have finally for the transformed

integral
f:[: V'udv dw.




IN A MULTIPLE INTEGRAL, . 205

949. Third Evample. Transform f f Vdzdy to a double
integral with the variables » and 6, supposing
x=r cos 0, y =rsin 6.

We may put 8 for v and = for % in the general formule;
us

%%—%%=rms’0+r gin*f =1»;
and the transformed integral is |
[[rrasar.

This is a transformation with which the student is probably
already familiar; the limits must of course be so taken that
every element which enters into the original integral shall
also occur in the transformed integral.

A particular case of this example may be noticed. Sup-
‘pose the integral to be

[[# @2+ 2y) dzdy;
by the present transformation this becomes
f f¢ {for cos (6 —a)} rd0 dr,

where Zcosa =a and ksina=5. Now put 0—a=4¥, so
that the integral becomes :

f f & (kr cos @) rdf' dr;

then stppose  cos@=2' and 7sin &' = 4 and the integral
may be again changed to - :

f [6 () ay.



206 CHANGE OF THE VARIABLES

Thus suppressing the accents we may write
[[# @2+ ty) dody = [ (r) 22y,

where & =/(a*+5"). The limits will generally be different
in the two integrals; those on the right-hand side must be
determined by special examination, corresponding to given
limits on the left-hand side,

943, Fourth Example. Transform f f "V dzdy, having
o/ e

given
z=au+bv, y=butav, a>b

Eliminate u, thus ay — bz = (a® — %) v, and the first trans-
formation gives
2
—b2fcfasd
I v,
a JJ_ bz
o] , ,

where V, is what ¥ becomes when we put l;-f +2

v for

y. Next change the order of integration ; this gives

2 2 2 ¢ 2 __ 72
“”’f‘"’f V,dvdo+2 ”f [ Titoaz,
a o Jla+do a —aﬁl;bt _“%,,

We have now to change from  to » by means of the

equation & = au + bv, which gives T =% the limits of »

corresponding to the known limits of z are easily ascer-

tained.
Thus we have finally for the transformed integral

e—

e o=bv e=bv
(a’—b’)k+b'“ V'dvdu+(a’—b’)f . ’ ; V' dv du.
@ "%

The correctness of the transformation may be verified by
supposing ¥ to be some simple function of 2 and y; for



IN A MULTIPLE INTEGRAL. 207

example, if ¥ be unity, the value of the original or of the

transformed integral is (i; .

244. Fifth Example. The area of a surface is given by
the integral ‘

f fdm dy \/ {1 + (Zz—w)’+ (Z—;)’} (Art. 170) ;

reqllllired to transform it into an integral with respect to 8 and
¢, having given
z=rcosf, ax=rsinfcos¢p, y=rsind sing.
From the known equation to the surface z is given in

terms of z and y; hence by substituting we have an equation
which gives  in terms of 6 and ¢.

We will first find the transformation for dzdy :

%=Z—;sin0 cos ¢ + 7 cos @ cos P,

%:%hinﬂ cos ¢ —r 8in @ sin ¢,

%:Z_;sino sin ¢ +  cos  sin ¢,

%=%sino gin ¢ + = sin 6 cos ¢.
Hence %%_% % =r sinO(r coso+%sin0);
thus de dy will be replaced by

r sin 6 (r 008 0 +‘§—;sine) b do.

‘We have next to transform

Vi @)+ G}
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dz dz dx dz dy

We have D= 3 dyde’
dz dz dx dzdy
= dp Iy dg’
dz dr

Also ‘—ia—‘—i—ocosﬂ—rsma

ds _ dr cos @
dp dp
Thus e is a fraction of which the numerator is

da
de dy _ dz dy
dl dp — d¢ db’
that is, (z—%cosﬂ—r sina) (Z—; ginf sin¢ +r sin 6 cos{¢)
g;oosﬂ(jasmesm¢+r cosBsm¢>

that is,
—r sm¢d¢+r 8in 6 cos § cos¢w —r*8in' 0 cos ¢,

and the denominator is -

d6 dp — dp db’
the value of which was found before ; thus
I rsmecosacomﬁdo rsm¢‘—l‘—#——r’m "6 cos¢p

2 7 sinf (r cos 0+ sin 6§ Zg)

Similarly A
19 o
e r cos¢od¢+r 8in 6 cos 6 sm¢o———r’sm Osin¢
dy

’

rsmﬂ(rcose+sm0 d9)
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therefore
14 (g—i)’ + (‘-’If)

and finally the transformed integral is

[l it + (55) + snte ()} rapas.

245. There will be no difficulty now in the transformation
of a triple integral. Suppose that V is a function of @, y, 2,

and that f j f Vdxdydz is to be transformed into a triple

integral with respect to three new variables », v, v, which are
connected with @, y, z by three equations. From the investi-
gation of Art. 239, we may anticipate that the result will
take its simplest form when the old variables are given ex-
plicitly in terms of the new. Suppose then

z=f, (4, v, w), y=F£ (% v,w), z2=Ff (% v, 1).cre.(l).

‘We first transform the integral with respect to 2 into an
integral with respect to w. During the integration for z we
regard « and y as constants; theoretically then we should
from (1) express z as a function of «, y, and w, by eliminating
u and v; we should then find the differential coefficient of 2z
with respect to w regarding & and y as constants. But we
may obtain the required result by differentiating equations (1)
as they stand,

s 7'sin'd +* (%)’ + #*sin* @ (%)’
- r*sin* 0 (r, cos @ +sin 0 %)’

b

dudo  dvdw T dw= "
Bde i &
dudw dvdw dw
Bdu Fdo &, &
dudw dvdw’ dw dw’
T, 1.C. ‘ 14
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Eliminate du and é; thus we find
dw dw
dz N

21;__—_2}, _35, .___3-"1 7—’_1’
dudv du dv
where N=%(‘!ﬁ‘ifg_4ﬂ‘!ﬁ) dﬂ(df;‘iﬁ df, df,

dw\du dv dudv)” dw\dudv du do

RACLR

(= =

dudyv dudv]’
Hence the integral is transformed into

fffv,afl?é%@dxdydw,

dudv  dudv

where V| indicates what ¥ becomes when for z its value in
terms of z, y and w is substituted. We must also determine
the limits of w from the known limits of z. Next we may
change the order of integration for ¥ and w, and then pro-
‘ceed.as before to remove y and introduce v. Then again we
should change the order of integration for w and « and then
for v and z, and finally remove = and introduce ». And in ex-
amples it might be advisable to go through the process step by
step, in order to obtain the limits of the transformed integral.

‘We may however more simply ascertain the final formula
thus. Transform the integral with respect to z into an inte-
gral with respect to w as above; then twice change the order
of integration, so that we have .

fﬂ’zﬂi@dw&cdy.

dudv  dudv

Now we have to transform the double integral with respect
to z and y into a double integral with respect to » and v by
means of the first tWo of equations (1). Hence we know
by Art. 239 that the symbol dz dy will be replaced by

(‘—i—'t;%—‘—l‘f’dﬂ) dvdu;

dudv dudv
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and the integral is finally transformed into

| f f f V'Ndwdvdu,

where V' is what ¥V becomes when for «, y, and 2, their values
in terms of u, v, and w are substituted.

The student will now have no difficulty in investigating
the more complex case, in which the old and new variables
are connected by equations of the form

¢, (2 y, 2, u, v, w)=0
&, (@, y, 2, u, v, w) = 0} ..... tveveoses . (2).
¢8(z’ y’ z’ u’ v’ w) =9
Here it will be found that
d= _N, dy_N, dz_DN,
dw D, dv D’ du D,’
also that N,=D, and N,=D,.
Thus ffdexdydz=fffV'—l;—‘dudvdw, where
8

_ 94, (d¢.d¢. dé, d¢.) + Qﬁ(‘fﬁ@g _d_¢;<1g')

1" dw\du dv _ du dv dw \du dv du dv
88,3 )
dw\du dv du dv)’

and — D, is equal td a similar expression with z, y, 2 instead
of u, v, w respectively. .

It may happeh that e%uations (2) will impose some restric-
tion as to the way in which the transformations are to be
effected. For example suppose we have

z+y+z—u=0, z+y—ww=0, y—uww=0.

From these equations we cannot express z in terms of w and
z and y, and therefore we cannot begin by transforming from
£ to w. We may however begin by transforming from 2 to u
or from 2 to v; or we may begin by transforming from  or y

to % or v or w.
14—2



212 CHANGE OF THE VARIABLES

246. It may be instructive to illustrate these transforma-
tions geometrically. 'We begin with the double integral.

Y]

Let f f Vdx dy be a double integral, which is to be taken

for all the values of = and y comprised within the boundary
ABCD. Suppose the variables' 2 and y connected with two
new variables » and v by the equations

z=f(4,v), Y=F 1% V)ereriercenen. (1).

From these equations let « and v be found in terms of
« and y, so that we may write

u=F (2,y), v=F,(@9).c0c0uue... oeee(2).

Now by ascribing any constant value to u the first equa-~
tion of (2) may be considered as representing a curve, and by
giving in succession different constant values to u, we have a
series of such curves. Let then APQC be a curve, at every

int of which F, (z, y) has a certain constant value u; and
f:i A'SBRC'’ be a curve, at every point of which F, (z, y) has
a certain constant value w4 u. Similarly let BPSD be a
curve, at every point of which Z, (z, y) has a certain constant
value v; and let B'QRD’ be a curve, at every point of which
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F, (z, y) has a certain constant value v + 8v. Let z, y now
denote the co-ordinates of P; we shall proceed to express
the co-ordinates of @, S, and R. :

The co-ordinates of @ are found from those of P, by chang-
ing v into v+ d0; hence by (1) they are ultimately, when
is ndefinitely small,

dz dy.
m+a;80, and y+7”8v.

Similarly the co-ordinates of 8§ are found from those of P
by changing = into u + &u; hence by (1) they are ultimately

dy
‘7'; 8“.

The co-ordinates of R are found from those of P by
changing both u into w+8u and v into v+ 8v; hence by
(1) they are ultimately

dx de dy dy
a:+du8u+dv81:, and y+du8u+dev.

These results shew that P, @, R, § are ultimately sitnated
at the angular points of a parallelogram. The area of this
parallelogram may be taken without error in the limit for the
area of the curvilinear figure PQRS. The expression for the
area of the triangle PQR in terms of the co-ordinates of its
angular points is known (see Plane Co-ordinate Geometry,
Art. 11), and the area of the parallelogram is double that of

the triangle. Hence we have ultimately for the area of
PQRS the expression

dx
a:+%8u, and y+

de dy dx dy
t(HZE-F %) dusw.

Thus it is obvious that the integral [ f Vdxdy may be
replaced by '

[ - )i
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the ambiguity of sign would disappear in an example in
which theg‘;igits of lgl:lte ation wergll);enown. In ﬁndixl:g the
value of the tr‘ansformegr integral, we may suppose that we
first integrate with respect to v, so that u is kept constant;
this amounts to taking all the elements such as PQRS, which
form a strip such as 44'C’'C. Then the integration with
respect to u amounts to taking all such strips as 44'C'C
which are contained within the assigned bounfary ABCD.

247. 'We proceed to illustrate geometrically the trans-
formation of a triple integral.

zZ

Let [[[Vdadyds be a triple integral, which is to be taken

for all values of z, y, and z comprised between certain as-
signed limits. Suppose the variables @, y, and z connected
with three new varables u, v, w by the equations

z=f; (“’ v, w)’ !I=f; (u, v, w), z=f; (u, v, w) ......(l).

From these equations let %, v, and w be found in terms of
z, ¥, and z, 8o that we may write
u=F (2,92, v=F(y2), w=F(@=y?2..@2)
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Now by ascribing any constant value to u, the first equa-
tion of (2) may be considered as representing a surface, and
by giving in succession different constant values to u we
have a series of such surfaces. Supgose there to be a surface
at every point of which F;g, %, z) has the constant value v,
and. let the four points P, B, D, C be in that surface; also
suppose there to be a surface at every point of which
F, (z, y, 2) has the constant value -+ du, and let the four
ggints A, F, G, E be in that surface. Similarly suppose

» A, E, O to be in a surface at every point of wg‘i)ch
F, (z, y, z) has the constant value v, and B, D, G, Fto be in
a surface at every point of which F, (x, y, z) has the constant
value v + 8v. Lastly suppose P, 4, ¥, B to be in a surface
at every point of which F, (z, y, 2) has the constant value w,
and C, D, G, E to be in a surface at every point of which
F, (x, y, 2) has the constant value w + &w.

Let @, y, # now denote the co-ordinates of P; we shall
proceed to express the co-ordinates of the other points. The
co-ordinates of 4 are found from those of P by changing u
into u + du; hence by (1) they are ultimately when Su is
indefinitely small, .

dx dy dz
a:+¢—i;8u, y+%8u, ”’%8"'

The co-ordinates of B are found from those of P by chang-
ing v into v+ dv; hence by (1) they are ultimately

m+%§80, y+%80, z+%8v.

Similarly the co-ordinates of C are ultimately
d;

dx dz
m+‘—l;8w, y+d—lw8w, z+%8w.

The co-ordinates of D are found from those of P by chang-
ing v into v+ v, and w into w+ w; hence by (1) they are
ultimately

dx dx dy dy dz dz
m+%30+%8w, y+2—vSv+d-—w8w, z+3——080+d-708w.

Similarly the co-ordinates of E, F and G may be found. -
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These results shew that P, 4, B, C, D, E, F, @G are ulti-
mately situated at the angular points of a parallelopiped ; and
the volume of this parallelopiped may be taken without error
in the limit for the volume of the solid bounded by the six
surfaces which we have referred to. Now by a known theo-
rem the volume of a tetrahedron can be expressed in terms
of the co-ordinates of its angular points, and the volume of
the parallelopiped PG is six times that of the tetrahedron
ABPC. Hence finally we have for the volume of the paral-
lelopiped ’
- (de (dy dz dy dz) dy (dz dx dzd:c)

% E;(du dw dw v (

du\dv dw dw dv

dz (de dy dr dy _
7 (%- K dv)} Sudvdw = + Noudvdw say.
- Hence the triple integral is transformed into

+ f f f V' Ndudodw;

the ambiguity in sign would disappear in an example where
the limits of integration were known.

248. We have now given the theory of the transforma-
tion of double and triple integrals; the essential point in our
investigation is, that we have shewn how to remove the old
variables and replace them by the new variables one at a
time. 'We recommend the student to pay attention to this
point, as we conceive that the theory of the subject is thus
made clear and simple, and at the same time the limits of the
_ transformed integra{)can be more easily ascertained. We do
not lay any stress on the geometrical tllustrations in the two

reced?i,ng articles; they require much more development
fore they can be accepted as rigid demonstrations.

249. Before leaving the subject we will briefly indicate
the method formerly used in solving the problem. This
method we have not brought prominently forward, partly
because it gives no assistance in determining the new Em.its,
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and partly on account of its obscurity; the latter defect has
been frequently noticed by writers on the subject.
Suppose f f Vdxdy is to be transformed into an integral

with respect to two new variables » and v of which the old
variables are known functions.

Let the variables undergo infinitesimal changes : thus

dx dz .
d’c=¢—i;du+%dv ........................ (l),
d dy
dy=EZdu+E-dv .............. ceeresenes (2

Now in the original expression Vdzdy in forming dz we
suppose y constant, that is, dy =0; hence (2) becomes

dy , . d
0= Z%du+ d-—z @V e ),

find dv from this and substitate it in (1); thus

do dy _dw dy
_dudv dv du
T

&z Qereersresressons .

dv
Again, in forming dy in Vdzdy we suppose  constant,

that is, dz=0; hence by (4) we must suppose du=0; thus
from (2)

EIE: ¥ (5).
From (4) and (5)
_ (% dy _dx dy .

and f f Vcl'c dy becomes

,UV'(% %—?—v g%)dudv.
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With respect to the limits of integration we can only
give the general direction, that the new limits must be so
taken as to include every element which was included by the

old limits.

250. Similarly in transforming a triple integral

ﬂ Vo dy ds

the process was as follows. Let the new variables be u, v, w»;
in forming dz we must suppose  and y constant; thus we

have
dz dz dz
=Edu+% dv+;l—1;d?o,

de ,  dx

2 .
0= a;du+%dv+% dw,

_dy dy dy
0= d—udu+d_v dv+%dw,

du dv dv du
where N has the same value as in Art. 247.

thus dz=m....uu. ..... cssccascne

Next in forming dy we have to regard z and z as constant;

hence by (1) we must regard w as constant; thus we have

dy =%’Z—dn+%dv,

therefore dy= dv du di N

du

e — " ——— .




EXAMPLES. 219

And lastly in forming dz we suppose y and z constant,
that is, by (1) and (2) we suppose w and v constant; thus

dx
da:= %du ............ ............(3).

From (1), (2), and (3)
dz dy dz = Ndu dv dw.

251. The student who wishes to study the history of
this subject may be assisted by the following references.
Lacroix, Calcul Diff. et Intégral, Vol. 11. p. 205; also the
references to the older authorities will be found in page xI1. of
the table prefixed to this volume. De Morgan, Diff. and
Integral Calculus, p. 392. Moigno, Calcul Duyf. et ntégral,
Vol. 11. p. 214; Ostrogradsky, Mémoires de U’ Académie de
St Pétersgourg, Sixidme Série, 1838, p. 401. Catalan, Mé-
motres Couronnés par U Académie...de Bruxelles, Vol. XIV. p. 1.
Boole, Cambridge Mathematical Journal, Vol.1v. p.20. Cauchy,
Exercices d’ Analyse et de Physique Mathématique, Vol. 1v.

. 128. Svanberg, Nova Acta Regie Soctetatis Scientiarum
saliensis, Vol. x111. 1847, p. 1. De Morgan, Transactions
of the Cambridge Phil. Society, Vol. 1X. p. 61233]

EXAMPLES.

. 1. Shew that if z=asin§sin ¢ and y=2>cos 6 sin ¢, the
double integral f f dxdy is transformed into

+ fab 8in ¢ cos ¢ dep .

2. If z=usina+vcosa and y=wucosa—vsina, prove
that

ﬂf(“’ y) Vﬁ%=ffﬁ (uv) ﬁ‘fﬁ_—v,)-.
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3. Prove that

f: [ :4, (@ +y) dm dy= o fo°¢(z) .

4. Transform f f Vdxdy, where y = oxu and & =—— +u

If the limits of y be 0 and « and the limits of « be
0 and q, find the limits in the transformed integral.

Result. f j Oy (1 4+ w)*dudo.

5. Transform f fe‘""”‘""‘”“‘ﬂ dedy from rectangular to

Eolar co-ordinates, and thence shew that if the limits
oth of z and y be zero and infinity, the value of the

integral will be

2sina’

. . b
6. Transform f ‘ f ¢ (z, y) dx dy to polar co-ordinates, and

indicate the limits for ea.ch order in the transformed
integral.

Shew that

wa dx dy ltan" ab
s+t +y)t c/(@+b8+d)"

7. Apply the transformation from rectangular to polar co-
ordinates in double integrals to shew that

f f adzdy 2
@yt @y et atd”

8. 'Transform the double integral f / f (=, y) dx dy into one
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in which » and 6 shall be the independent variables,
having given

z=rcosf+asinf, y=rsinf+acosh.
Result.

ff(rco30+asin0, r8in 0 + a cos 6) (a sin 20 ~ r) 40 dr.

9. Transform f fw-:ﬂdmdy into & double integral where

r and ¢ are the independent variables where-g’ =t and

P?=a"+%"; and if the limits of = and y be each 0
and o, find the limits of » and ¢.

B, [[[[ et

10. If = and y are given as functions of » and 6, transform
the integral f j j dxz dydz into another where », § and

2 are the variables; and if z=7cosd and y=r siné,
find the volume included by the four surfaces whose
equations are r=a, 2=0, =0, and z=mr cos 6.

Result. Thevolnme=[’far’mcosﬁd0dr=mTa’.
ovo

11. If ax=yz, By =zz, vz =2xy, shew that

[[] £ @ 8.9 dadbty = 4 [[[7(%2, %2, Z)iody a.

-

12.

N

Transform ffffl’dmldm,dm,dw‘ to r, 6, ¢ and y when

z, =rsinfcosp, x,=rcosfcosy,

z,=rsinfsing,  =rcosfsiny.

Result. fff V'r*sin 8 cos 0 dr d6 db -
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13. Find the elementary area included between the curves
¢ (z, y) =4, ¥ (*, y) =v, and the curves obtained b
giving to the parameters » and v indefinitely s
1ncrements.

Find the area included between a parabola and the
tangents at the extremities of the latus rectum b
dividing the area by a series of parabolas which touc
these tangents and by a series otP lines drawn from the
intersection of the tangents.

14. Transform the triple integral f f ] f(z, 3, 2) de dy de into

one in which », y, z are the independent variables,
ha.ving given v (z, ¥ 2 r) =0; and change the vari-
ables in the above integral from z, g, 2 to r, 6, ¢,

having given ,
\]r(:v,y,z,r)x::o, ‘P'l(y’z’ﬂo):(): 1}0‘,(2,9‘,0,¢)=0.
W &Y, dY,
dr df d.
Result. _[/]j.i'}_‘kaﬁ(r’o"#)qﬂwd‘#-
dr dy ds .

" 15. Transform the double integral

ffeay/ (& @)}
in which z, y, z are connected by the equation

2 +y'+2'=1, to an integral in terms of @ and ¢,
having these relations,

z=s8in¢4/(1-m'sin’fd), y=cosfcosg,
£ =sin6 /(1 — n*sin’¢), m'+n'=1.
Hence prove that

‘ i m* cos’@ + n* cos’Pp ;_qr
fo[o N/(l - m’sinie) V(l — nnsing¢) d9d¢_§ .
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16. Transforr the integral [ [dodyds 1o r, 6, ¢, where
@=rsingy(1—n'cos’d), y=rcos¢gsind,
. 2 =1 cos 0 4/(cos’p + n*sin’¢p).

r* {(n*— 1) cos*¢p — n* 8in" 6} dr d6 d¢p
Reault ff f (1 —n*cos'd) y/(cos’d + nsin’¢) °

17. Transform the expression f f '3: 8in 0 df d¢ for a volume,
to rectangular co-ordinates.

Reilt. § [[(s—po— gy) dudy; this should be in--
terpreted geometrically.

18. Ifx+y+2=u, z+y=uv, y=uvw, prove that

f:f:f:”‘”dydz =ff:]: V uto du do duo.

19. If a,=rcosb,
x,=r 8in 6, cos f,,
@, =1 8in 6, 8in 6, cos 6,
@, ,=rsinf sinf,...sin 0, , cosd, ,

z, =7 gin 0,siné,...sin 6, ,siné, ,

shew that  [[[.ce... Ve, do,...d,
=1 f f f ...... V2" (sin 6™ (sin 8)™*
...... sin 6, , dr d6, dé.......d6, ,,

where V is any function of z,, =,,...2,, and V' what
this function becomes when the variables are changed.
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CHAPTER XIL

DEFINITE INTEGRALS.

252. 'WHEN the indefinite integral of a function is known,
we can immediately obtain the value of the definite integral
corresionding to any assigned limits of the variable. Some-
times however we are able by special methods to assign the
value of a definite integral when we cannot express the
indefinite integral in a finite form ; sometimes without actuall
finding the value of a definite integral we can shew that 1t

ssesses important properties. In some cases in which the
indefinite integral of a function can be found, the definite
integral between certain limits may have a value which is
worthy of notice, on account of the simple form in whieh it
may exFressed. We shall in the present chapter give
examples of these general statements.

‘We may observe that a collection of the known results
with respect to Definite Integrals has been published in a

uarto volume at Amsterdam, by D. Bierens de Haan, under
the title of Tables d’ Intégrales gé nies. :

253. Suppose f(x) and F (x) rational algebraical functions
of z, and f(x) of lower dimensions than F'(z), and suppose
the equation F' () = 0 to have no real roots; it is required to

find the value of - fa)
x
: f S
It will be seen that under the above suppositions, the

eﬁ)ression to be integrated never becomes infinite for real
values of a. :
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Let a+B8+/(—1) and a— B 4/(—1) represent a pair of the
imaginary roots of /'(x) = 0; then the corresponding quadratic

fraction of the series into which ';,((:;)) can be decomposed,

may be represented by
24 (x—a) + 28R
(z—a)'+p8"
the constants 4 and B being found from the equation

A—By(-1) =%((‘_—11))}} (Art. 21).
2B8dx Lz
Now fm= 2B tan B ¢ ,
therefore f ) @%{%@= 2 Br.
° (w—d)de _[° it
Also Ry

and it is obvious that the latter integral between the assigned
limits is zero, for the negative part is numerically equal to
the positive part. Thus 2B represents the part of the
integral corresponding to the pair of imaginary roots under
consideration. :

If then we suppose F'(z) to be of 2n dimensions, and
B, B,,...... B, to be the n terms of which we have taken B -
as the type, we have

L{,L(‘:)) do=2m B, +B,+ eone + Bl
254." As an example of the preceding article we take
* " dx
) o 14+2™°
where m and » are positive integers, and m less than n. Here
1)= . 1
)= T B

A-By(-
T. L C.
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and it is known from the theory of equations that the values
of a4+ B4/(— 1) are obtained from the expression

(2r+1)-n- 2r+1)n
2n n

by giving to r successively the values 0, 1, 2,...... up to
n—1.

+4/(—1) sin

Thus, by Demoivre’s theorem,

{a+BV (=)™ =cos ¢ +4/(—1) sing,

where

p=(n—2m—1) EEDT_ 0 1) (g 4y EmADT

2

80 that
08 ¢ + 4/(— 1) 8in ¢ =—cos (2r + 1) 6 + 4/(— 1) sin (2r +1) 4,
where 9=2m+17r
2n
Hence
A-ByE1) = !
—By( T 2n —cos(2r+1)0+~/(—l) sin (2r +1) 6
_cos(2r+1)0+4/( 1)sm(2r+1)0
) 2n

therefore B=w

2n '
Hence

* o™ dz

ey r{sm0+sm30+sm50+ .+ sin (2n —1) 6}.

The sum of the series of sines is shewn in works on Trigo-

sin’nd
nometry to be no , and in the present case nf = 2m2+ 1 ,

so that sin*nf = 1 Therefore

® ™ dx T

lta™ 2m + 1
n8in —— 7
"2n
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It is obvmus that / i a:“ is half of the above result,

that is, :
© ™ dx T

o 1+7 o Im+1
2n sin T
2n

255. In the last formula of the preceding article put

™=y, and suppose -Ic thus we obtain
f s = &
CTEy TEmm e .

This result holds when & has any value comprised between
0 and 1. For the only restriction on the Sosmve integers m
and n is that m must be less than =, and therefore by pro-
2m + 1

perly choosing m and n we may make equal to any

assigned proper fraction which has an even denommator when
2m 41
2n

in its lowest terms. And although we cannot make

exactly equal to any fraction which has an odd denominator
when in 1ts lowest terms, yet we can make it differ from
such a fraction by as small a quantity as we please, and thus
deduce the required result.

In the last result put «” for y, where r is any positive
quantity ; thus

f“raf'""m""dm_ T
s 14+  sinkn’

. & dx r
that is, T e —remr
”m’.—l
Let kr=s; thus de__ 7 .
o 1+ . 8
rsin -

15—2
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The only restriction on the positive quantities » and s is
that s must be less than 7.

The student will probably find no serious difficulty in the
method we have mdxcated er oving the truth of equation
(1) when k is a fraction whlchlixas an odd denominator when
in its lowest terms ; nevertheless a few remarks may be made
which will establish the proposition decisively, and which
will also sérve as useful exercises in the subject of the pre-
sent chapter.

Let —J’ ¥ d‘/ ; then
_ ,,ud,, Yy
1+y 14y’

and by putting% for y we find that
”y"‘dy letdz
. 14y o142’

yk—l + y—l'

1+y

d: tlo
Therefore = i f Z T Y @).

Equation (2) shews that Z_'I: is negative if y**— y* is con-
stantly positive, and positive if y* —y™ is constantly nega-~
tive, between the limits 0 and 1 for y. Hence g% is negative

or positive according as % is less or greater than % . Thusu

o e . . 1 .
diminishes as % increases from 0 to 30 and u increases as k&

increases from % to 1.
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Now let % denote any fraction in its lowest terms, in
which B is an odd integer; and let » be any even integer.

Let %, =£°;—;1-, and %, =221 and let £, denote %. Let

u,, %, ¥, dengte the values of f ‘1{‘- +dy when for % we sub-
stitute %,, k,, %, respectively. Then by equation (1)

™

and U, = s'—i—nk‘;r .

Now we may take p so 1large that %, and %, shall be both
greater or both less than 35 and then by the inferences drawn

from equation (2) it follows that », must lie numerically be-
tween %, and w,. Thus », cannot differ from %, or u, by so
much as the difference of u, and u,; and therefore a fortiors
u, cannot differ from Efﬁzlc—; by so much as the difference of
u, and u,. Hence as p x’nay be indefinitely increased we

have finally », =

U, = ——
1 sinkmw

™
sinkr’

Eulerian Integrals.
256. The definite integral
/ (1= 2™ e
' °

is called the first Fulerian integral; we shall denote it by the
symbol B (I, m). .

The definite integral
f o™ da

o
is called the second Eulerian integral; it is denoted by the
symbol T (n).
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We shall now give some of the properties of these inte-

%'rals the constants in these 1ntegrals which we have denoted
y I, m, n, are supposed positive in all that follows.

257. In the first Eulerian integral put z=1-z;
1 1
thus fz’"‘(l—:c)"‘dw=f (1= 2 da;
[ o

this shews that the constants I and m maz be interchanged
without altering the value of the integral ; that is,

B(l, m) =B (m, I).
Again in the first Eulerian integral put # =—Y; thus

l . Hd 1+y
fa:"(l <) dz—f 0 Yy dy

a+y™"
In the same integral put = ﬁ; thus

n—! dy

fa:’“(l a:)"“da:-—f Lt

258. Lete™®=y, so that z= logg; then we have

f :e'” e de= fo l(log?%)md;l/,

which consequently gives another form of I (n).
259. We have by integration by parts
fe"w‘dz=-—e“z"+nfe"z"‘¢h;

and ¢”2" vanishes when =0, and also when z=w. (See
Diff. Cal. Art. 153) ; thus

fme"a:"dm=nfme”a:""¢h;
[ []
that is, T'(n+ 1) =2l (n)...... Ceerernsonienes (1).
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Since fe"dfc=-—e"'we havef e*dr=1; that is,

T(1) =1.ceeeirrrnirennes cevennees(2).
From (1) and (2) we see that if # be an integer
T'(n+1)=|a.

When 7 is not an integer we may by repeated use of
equation (1) make the value of I' () where n 18 greater than
unity depend on that of I' (m) where m is less than unity- '

260. By assuming kx =2 we have

f :e'" 2 de= ]%. f :e" " ldz = L (n)

e

261. We shall now prove an important equation which
connects the two Eulerian integrals.

Tntegrate the double integral [ [ "2ty s dy d
first with respect to 2; we thus obt:gin,o by Art. 260,

® ll—ld

Again integrate the same double integral first with respect
to y; we thus obtain

® -y m!-lﬂ-l
r ¢ L da,
m [
that is, T (m) [ "o d,
that is, T (m) T (D).

Hence " y~'dy _T(OT (m) ’

o I+y)™ T (+m) "
Hence, by Art. 257,

LT (m)
B(l, m)—m—,%-.
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262. In the result of the preceding article, suppose
l+m =1; thus, if m is less than unity,

@ ld

[ 5 -rmra-m,
since I' (1) =1. Hence, by Art. 255, if m is less than unity

T(m)T(1—m)=—"

sin mar

263. Put m =% in the last result; then

ra)r@)=m
therefore I' () =/

‘We will give another proof of the last result.
Let u= f e®dx; then it 18 obvious that » also
1]

=f eVdy;
. [}
thus u==f erdox | ey
o’ Jo
=f f P dy (Art. 66).
oYo
This double integral is shewn in Art. 204 to be
o [ "
=3[ [ enrapar=3,
[] [}

therefore u= 1/5— .
Now '@ = f e*x¥dx; put =73,
, .
thus - l‘(t})=2fwe'”’dy=2u=~/vr.
[']

264. We shall now give an expression for I'(rn) that will
afford another proof of the result in Art. 262. We know that
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-1
h

the limit of when % is indefinitely diminished is log «;

hence

(10g };)ﬂ; limit of (1 ~ af)!-:;

80 We may write
1 n-1 1-— ml n-1 .
(o62) = (55 +o ’
where y is a quantity that diminishes without limit when %
does so.

Put = then, by At 258,
L= (1=a)do+ [y do.
In the first integral put ::= z"; thus )
r (n) - f:yda:=r" f:z’“‘ (1—2)*"da.

We have it in our ];fwer to suppose » an integer; then
the integral on the right-hand eide, by Art. 33, is

1.2.8.....r.
n(n+1)..... (n+r—1)

Let r increase indefinitely, then y vanishes and we have

1.2.3.0r .y
(n+1)...... (ntr—1)

265. From the result of the preceding article we have

T (n) = limit of -

{T (m)}* ={1_m’} 1 m* }{1_ m* }
I (n—m) T (n+m) o (n+1)° (n+2)7 "
A particular case of this is obtained by supposing n=1;
thus

P(‘l.-m)ll"(lj-g-m)=(1.—"f“:)(1—%.) (1—’;—:) ......... ;'
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the expression on the right-hand side is known to be equal to

sin m'rr; thus
mr
r(1-m)r(1+m)=si;";", .
therefore T(m)T (1-—m)= sin’;_’r (Art. 259).

266. We shall now establish the following equation, »
being an integer,

r (;t) T (;) r (g) ...... r (1‘%1) — (o) Tk,

First suppose n odd ; in Art. 262 put for m successively
2
n’

S
Sl

H

e upto =2, and multiply; thus

n-1

T (;l-z) r (?;) r (2)'1‘ (”; 1) = 2:._.Zin(n—l) T

sin — sln —
n n 2n

(See Plane Trigonometry, Chap. XX111.)

Next suppose n even ; in this case put for m successively

1 -2-, up to ”———2, and form the product as before; then
n’n 3 2n P

multiply the left-hand member by I (}) and the right-hand-
member by the equivalent 4/7; then we obtain the same
result as before.

267. A still more general formula is
I @) (s +Hr (= E - (22 S
"
]

=T (nx) (27r)—1 nt™




s
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kor; Which we shall now prove. Let ¢ () denote

el

2T (a) I‘(a:+5) ...... r(o+ ”—;—l)
) ;

n-1 -

we have then to shew that ¢ (z) = (2m) 3 ab,
‘We have
T (z+1)T (a:+ 1 +%) r (a:+ 1+ 2—:—1)
al' (nz + n)

» 1 2 n—1
—n x(z+’—l) (a:+-’-;) ....... (m+T)
T (wtn—1)(nx+n—2)......nx
= ¢ @)
Similarly ¢ (z+2) =¢(z+1) =¢ (x) ; and by proceeding
thus we have
¢ (@)= ¢ (@ +m),

where m may be as great as we please. Hence ¢ () is equal
to the limit of ¢ (x) when p is infinite ; thus ¢ () must de
¢ of z, that is, must have the same value whatever
« may be; hence ¢ () must have the same value as it has

when z=$; thus the theorem follows by the preceding ar-

ticle. This theorem is ascribed to Gauss; a more rigid proof
is given in Legendre's Ewercices de Calcul Intégral, Vol. 11
P- 23; see also the Journal de U Ecole Polytechnique, Vol. XVI.
p-212.

268. Many definite integrals may be expressed in terms
of the Gamma-function ; we shall give some examples.

$+1)=

¢ (=)

The integral / %% dz becomes by putting y for a’z*

e'dy N N
L 2ayy’ that is, -2—a-I‘ (3), or 23
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1—2)"*d=x x y

(@+a)™ put z+a 1+a’ thus we

Again, in f g
. [
obtain

1 1o - . 1 ror
Firapl 9 ey theeis, ot TO T,

. :
Again, in f @ (1—a%)"" do put z*=y; thus we obtain

)
%f : 3/%" (1—y)™" dy, that is, I;__f?éi_;m))_ .
Thus ffsiAPGcos"edg:flm,(l_m’)g_s—_lh
"))

1 g+1
=f (1 -2%) 7 do=
° p+4q
2?( 2 "“)
. . [P (l—-2)"de - by .
Again, in R (1—m)}'*"‘putw__——‘a(l—y)+by’ thus
we obtain

L[ - . LT (m)
W/;y" (1—y)™*dy, that is, dFT(+m)"

269. In fa:‘“ (@ — )" dz put x=ay; thus we obtain

T@T(m)

2
gttt fo ¥ (1—y)™* dy, that is, a™™* T(+m)

270. It is required to find the value of the multiple in-

tegral
fffw“ Yy dedyda...
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the integral being so taken as to give to the variables all
sitive values consistent with the condition that z+y+2+...
18 not greater than unity. '

‘We will suppose that there are three variables, and conse-
quently that the integral is a triple integral; the method
adopted will be seen to be applicable for any number of
variables.

‘We must first integrate for one of the variables, suppose z;
the limits then will be 0 and 1 —z —y; thus between these
limits

g l=2—y)" T'@ .
fz dz = . I‘(n+1)(1 z—y)"

Next integrate with respect to one of the remaining varia-
bles, suppose y ; the limits will be 0 and 1 —2; and between
these limits, by Art. 269,

frramamsrag= 8= T )

Lastly integrate with respect to = between the limits 0 and
1; thus between these limits

win 7. L(OT (m+n+1)
f“’H(l_"‘) do= I‘(l+n:n+n”+1) .

Hence the final result is
') TmI@+1) T )T (m+n+1)
F'n+1) Tm+n+1) T(l+m+n+1) ’

TOTm)T (n)
I'l+m+n+1)°

that is, A

271. Tt is required to find the value of the multiple is-
tegral .

f f f B oL dEdn dE..
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the integral being so taken as to give to the variables all
positive values consistent with the condition that

7+ (@) (5 +-

is not greater than unity.

Y RN s

- Then the integral becomes
a'B"yt... - .
ST fff:c’ y? 2 ..dzdyds...

with the condition that z+y+ 2+ ... is not %'eater than
unity. The value of the integral is, therefore, by the pre-

ceding article

I .
erpu TP QT (e ,
P4qr... P(zl;+§+§+---+l) ’

272. As a simple case of the preceding article we may
suppose p, ¢, 7, ... to be each unity, and ., 8, v, ... each equal
to a constant %; thus the condition is that £+4+9+ ¢+... is
not to be greater than 2. Therefore the value of the integral I

[[[-gramgr.agange...
Jimint.. r (l) T (m) T (n) |

1® Tl+m+nt...+1)’
which we may denote by ‘
Nhﬁ‘lﬂ"h...

Similarly if the integral is to be taken so that the sum of
the variables shall not exceed % + Ak, we obtain for the result

N (h + Ah) Hmint., “

= ——————
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Hence we conclude that the value of the integral extended
over all such positive values of the variables as make the
- sum of the variables lie between % and % + A% is

N{(’I+Ak)'w _ kuaﬂt..},
and when A#% is indefinitely diminished, this becomes
N({l+m+n+..) ™" Ap,

PO T(m) T (®) -.e s umint.n
T(l4m+nto) " A.

273. It is required to find the value of the multiple
integral

ff W@y L fety et ) dedyds...

the integral being so taken as to give to the variables all
ositive values consistent with the condition that z+y+ 2 +...
18 not greater than c.

We will suppose for simplicity that there are three
variables. By the preceding article if lf (®+y+2) were
replaced by unity that part of the integral which arises from
supposing the sum of the variables to lie between % and
h + Ak would be ultimately

L) T'(m) T'(n) fuminas
Ttm+n) R Ak,
And if the sum of the variables lies between % and A+ A&,
the value of f(z +y+2) can only differ from £(%) by a
small quantity of the same order as Ak Hence, neglecting
the square of Ak, that part of the integral which arises from
supposing the sum of the variables to lie between 4 and
h + Ak is ultimately
T(@)TI'(m)'(n)
L(l+m+mn)

Hence the whole integral is

T T(m)T'(n) e Hmin-1
I‘(l+1)n:+n) [of(")h ah.

that is,

£ B AR



240 DEFINITE INTEGRALS.

274. Similarly the value of

e + () + O arnar

for all positive values of the variables, such that

& @+

is not greater than ¢, is

l 'm n
(=) (=) (= ‘
a By (P) (q) ("> fcf(h) k;*%‘*;" dk. .
P g9 T
The result of this and the preceding article may be ex-
tended to the case of any number of variables.

275. It is required to find the value of the multiple
integral

ff o flaz, +az,+...... +a,z,) dz, dz, ... dz,,

the integral being so taken as to give to the variables all
values comsistent with the condition that z'+2)... 4+, is
not greater than unity. ’

By successive application of a transformation for a double
integral given in . 242, the multiple integral may be
. reduced to

f f o fle,) i,y .. dit,

where k=+(al+a'+...+a});

and these transformations do not affect the condition that the
sum of the squares of the variables is not to be greater than

unity.
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‘We have first then to find the value of the multiple integral
f f f ... dz,dz, ... dx,, the variables being supposed to have all

values consistent with the condition that z}+ z}+... +a,*
is not greater than 1—a" First suppose that the variables
are to have only positive values; then we obtain the value of
the integral by supposing in Art. 271, that each of the quan-
tities /, m, ... is unity, that each of the quantities p, ¢, ... is
equal to 2, and that each of the quantities @, 3, ... 1s equal to
¥ (1 —=). Thus the result is

LG i

(l—w .
2”‘!I‘(";1+1) '

But if the variables may have negative as well as positive
values, this result must be multiplied by 2**. Thus we get

w!’—l— (1— a:")? .
)

Hence, ﬁnalal:[y, since the limits of , will be —1 and 1, the

multiple integral is equal to
y 1 -t
— f flez) (1 — 2™ da,
vt +1)

This agrees with the result given by Professor Boole in
the Cambridge Mathematical Journal, V}:)l. I p. 280, as it
may be found by integrating his equation (15) by parts.

276. It is required to find the value of the multiple
integral

flaz +az,+...+ a2,
[I[- Lttt dn e, ... e,

the integral being so taken as to give to the variables all
T. L C. 16
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values consistent with the condition that z'+ 2z*+ ... 42,
is not greater than unity.

As in the preceding article the integral may be trans-
formed into

[ S,

First integrate with respect to_the variables z,, Lyyeee Ty,
the limits being given by the condition that z'taxr... )}
is not greater than 1—=® Now if the variables were re-
stricted to positive values, the integral

/f/ dew dx, ... dz, -
Wl -af—af =)
by Art. 274 would be equal to

#-1 pr}—z3 n-1_
g o [ ot
T ) ] -
2

that is, to

rgr, s e

mie (=) 2 (Ar, 269),
T () r(3)
that is, to : .}__IM(I_M%'".
RO

But if the variables may have negative as well as positive
" values, this result must be multiplied by 2**. Thus we get

9 .
2 -]
_7_7'_ (1 —wl’)s lo

r ()
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Hence finally, since the limits of z, are —1 and 1, the
multiple integral is equal to

[ iy (1
T (é)f"

277. Many methods have been used for exhibiting in
simple terms an approximate value of I'(n+1) when n is
very large: we give one of them.

The product ¢™z" vanishes when =0 and whenz=;
and it may be shewn that it has only one maximum value,
namely when z=n. We may therefore assume

€z =e"nt e i (1),

where ¢ is a variable which must lie between the limits — o«
and 4+ . .

Thus f ardo=oat [ Ko R )
Take the logarithms of both members of (1); thus
z—nlogxz=n—nlogn+t'...ccccernae. (8);
put £=n+u; thus
u—nlog(n+u)='—nlogn.ceeeere... (4).
But by Taylor’s Theorem
log (n+u) =1 +2_ i
g =logn n 2(7l+ E;)ia
where 6 is a proper fraction ; thus (4) becomes .
' nu'
2 (n+6u) &
Nimlw .
therefore 7@ (a0 =lieeeererrnenneeene(5) 3
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therefore U= m ..................... (6).

Baut from (3)

=4(2n)+2(1-0)¢, by (6).
Hence (2) becomes

fe"m‘d;c=e'fn‘f e~?{y/(2n) +2 (1-0) ¢} dt;

-o

and r e ?dt=4/(m); thus

j-a"a:“dx=e"‘n' v (2nm) {1+ ;/—(%‘;r-)-f:e" (1-6)tde} (7).

But since 1 —6 is positive and less than unity, the nume-
rical value of [ ¢=# (1~ ) ¢t is less than f e?tds, that
is, less than '}._.’Hence we conclude from (75' that as = is
increased indefinitely, the ratio of I'(n 4 1) to e n* &/(2nw)
approaches unity as its limit.

We may observe that in the original equation (1) we
have ¢ and not ¢ itself; hence the sign of ¢ is in our power,
and we accordingly take it so that equation (5) may hold,
supposing 4/ and 4/2 both positive.

See Liouville's Journal de Mathématiques, Vol. X. p. 464,
and Vol. XVII. p. 448.)

Definite Integrals obtained by differentiating or tntegrating
with respect to constants.

278. We shall now give some examples in which definite
integrals are obtained by means of differentiation with respect
to a constant. (See Art. 213.)




----- -

by:

DEFINITE INTEGRALS. 245

To find the value of f =% cos 2rz dz. Call the definite

integral u; then

du . Is,
ar-  a’
therefore d ]dof L % ;
r‘
therefore logu=— 5 T constant,
"
therefore u=Ade ¥,

where 4 is & quantity which is constant with respect to r,

that is, it does not contain ». To determine 4 we may suppose

r=0; thus u becomes f" e do, that is, Y7, (Art. 266).
[

Hence 4 = 52/—7-'., and

© "
f e'“””cos2ra:dav=ﬁre-
° 2a
279. We have stated in Art. 214, that when one of the
limits of integration is +nfinite the process of differentiation
with respect to a constant may be unsafe; in the present case
however it is easy to justify it; we have to shew that

f e+ p do vanishes where p is ultimately indefinitely small;

it is obvious that this quantity is numerically less than
P f e~?? dx where p, is the greatest value of p, that is,
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less than %‘g p,; but this vanishes since p, does. Similar

considerations apply to the succeeding cases.

280. To find the value of f -1 80 ;a:d:v . Denote it
by u, then
du _ [° .
' $=fo e~ cos rx dx.

ke _ —TBinTE—kcosre
But ]e cosrxdr=e¢ R ;
k
-k =

therefore f: eBeosradr= 7 vt

du k
thus i
therefore u=tan™ ’—7; .

* No constant is required because » vanishes with . This
result holds for any positive value of k; if we suppose k& to
diminish without limit, we obtain

f" smrzdz=_7r_
o Z 2

if r be positive ; if » be negative the result should be _:;2_:- .

281. To ﬁnd the value of f ("'*#) dzx. Denote it by
u, then

-—-=— ] '(”*oﬁ)dx

assume a:=;-l, then the limits of ¢ are oo and 0; and we
obtain

‘7;=—2u,
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dlogu _

therefore e = 2;
therefore log u =—2a + constant ;
therefore u=Ae™, '

To determine 4 we may suppose a=0; then u =«/?7r ;

therefore 4 = V—; ; thus
[ D gt
\ g ¢ "
o

282. 'We may also apply the grinciple of integration with
respect to a constant in order to determine some definite in-
tegrals; the principle may be established thus.

Let = f :4, (=, ) =,
then f’udc - f”fﬂp (2, ¢) do dw

‘ =_/:/j¢(:c, ¢)dzde;

since when the limits are constant, the order of integration is
indifferent éArt. 62). We shall now give some examples of
this method.

283. We know that f ePdr = i

[

Integrate both sides with respect to k& between the limits
a and b; thus

® g™ b
f .= dz =log 2"
' ’ @ @ b 7
It should be noticed that f e da and ey are both
(]

x x
¢

infinite; for f eode

[
. — [(dx ¢ dz
is greater than ¢ L;-, and[o =
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is mﬁmte. But this is not inconsistent with the assertion
that [ dz is finite, and without finding the value
of this mtegral it ig easy to shew that it must be finite. For
‘$lo)do ¢ (@) dz
it is equal to the sum of df —where
¢ (@) =e=—e*; the second of these mtegrals xs finite,. for
€

itislessthan-l-f ¢ (2) d, that is, less than L (;-—b‘f)

‘We have then only to examine / %i) dz.
[
Now by Maclaurin’s Theorem

$@=B-a)z+2 ¢"(ah),

where 6 is some fraction; thus $ =) ( ) ; 18 less than b —a + ﬂ’

where A is the greatest value whlch ¢" (z) can assume for
values of z less than ¢. Hence

[o'-l’—ia—’—) dz is less than (b—a)c+%f,

and 18 therefore finite.
284. We know that

f e*cos re de = 5—, k

e

Integrate both sides with respect to % between the limits
a and b; thus

" g b+
fo ——— ¢os rede= 1}log el
285. Let [ sin mda:be denoted by 4, and f ep 2

by B; we shall’ now determme the values of 4 and B; the
fX;tmer has already been determined by another method in
280.
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In the integral 4 put y for rz; thus
A=f°sinyd'y.
o ¥’

this shews that 4 is independent of r.

. dB ® zsinrx de
‘We have E——fo 1z
r sin re dx
and ‘ j.Bd'_/ z(1+2)’
i dB_(®1+asinre ,
) thuﬂ foBdf—-a?— , TH—w’dZ—A,
hence ' f "Bir 92 _A=0...n.. ().

Multiply by ¢™ and integrate; we obtain since 4 is con-
stant with respect to »

e’ { Bdr + B - A} = constant.
[]

Now whatever be the value of r, it is obvious that the
integrals represented by 4, B, and ] Bdr are finite; hence

the constant in the last equation must be zero, for the left-
hand member vanishes when r is infinite,

- Thus " | Bdr+ B=A4=0.uuccceeurrrrrrreres (2).
[ .
From (1) and (2)  2—_3B;
therefore B= Ce¢™,

where C is some constant. And from (2)
A=C"—-C(eT-1)=C
therefore B=AeTuuieuiriirnniinnnns .{8).
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. N;w when r is indefinitely diminished, B becomes
. %v’ , that is, Zér; hence from (3)

' T T _,

A= -§ and B= '§ € .

We have supposed r positive; it is obvious that if » be
negative, B has the same value as if » were positive, and

A has its sign changed; that is, if » be negative B= %r ¢

and A=—7. (Transactions of the Royal Irish Academy,
Vol. x1x. p. 277.)

From wls—f;gf=g ¢”, we obtain by differentiation
. .

with respect to 7,

=—€ .

f “zsinrzdr T _,
o 1+ 2

And from the same integral by integrating with respect
to r between the limits 0 and ¢, we have i

“sin cx dz -
J s s -

286. The preceding article contains a rigorous investi-
gation of the values of the integrals 4 and B; another
method has been sometimes given for finding the value of
B which is more simple but far less satisfactory. We will
however now give this method, as it will lead us to notice a
point of importance.

“cos ra:
Let B= f . ﬁ?h’
then d_lj’ = “wsin 2 dzx,

dar ‘,:—1+_='¢3’l
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d_’B_ *a® cos rx

and =), Tra P

Ccos rx

=-—j;.cosra:d:;v +f:°1_+? dzx

= —/ cos rx de+ B.
[]

Now we will assume on grounds presently to be examined,
that f cos redr=0; thus
.

B
ar*

and we have to find B from this eq;mtit)n. Multiply both
sides by 2 Z—f and integrate with respect to r; thus

e
(f)—le,

where % is a constant, that is, % is independent of ». Thus

=B,

dB
-d—r=~/(k+B’>,

dr p 3
therefore aB= m H

by intégrating we have

r+k=fﬁ_—g—3-5=log{3+~/(h+3')},

where % is another constant.

Thus e*=B+(k+ B).

By transposing, squaring, and reducing we finally obtain
B=Cg¢+ Ce™,
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where C, and C, are constants. We must now determine the
values of these constants. Since B cannot increase indefi-

nitely with » we must have C,=0; and then since B= g when
r=0 we have C’,=§. Thus

T

==€ .

We now proceed to consider the assumption involved in
the preceding method.

. . asinrz + r cos rz
Since fe‘“smrzdz=—e"’ ,+ 5 ,
a+r
» 8in 7 — @ CO8 7
and e cosrede=e"
f a'+r ’
° r
e sin rz de = ——;
we have /o p e 1
® a
and e™ cos re de = —4———;
f, a+r’

if a be a positive quantity.
If it were allowable to suppose a =0 we should obtain
[ sinrads=7, and [ cosrzdz=0.
[ r 0

sin rz

cos rz
, and |cosrxdx = s we

Since {sinrzde=—

are thus apparently led to the conclusion that the sine and co-
sine of an nfinite angle are both zero. ' The same conclusion
seems to be suggested in other cases, so that it has been
stated, that ¢ the indeterminate symbols sin o and cos o
are found in numberless cases to represent each of them,
0, the mean value of both sinx and.cos=.”

On this point however diversity of opinion exists among
mathematicians, and the discussion of it would be unsuitable
to an elementary work ; the student may hereafter consult
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three memoirs in the eighth volume of the Cambridge Philo-
sophical T'ransactions, numbered XV, XIX, and XXXII.

Definste Integrals obtained by Expansion.

287. If we expand log {1—ae*V(-Y} and log {1—ae™=V(-1
and add, we obtain 81 ) 8 }

log (1—2a cosz +a")

a' a
=—2(acosa:+§ cos2:c+§cos 3z + ...... )

both sides with respect to & between the limits 0 an

the series bein%lconvergent if @ i8 less than unity. Integrate
b 3
us .

f'log (1 —2a cos z +a') dz = 0, a being less than 1.
o

If a is greater than 1, since
log (1 —2a cos  + a%) =log o’ + log (1 - Zcoswq.%’) ,
we have '

f'log (1 —2a cos z + a*) dz == log a* =27 log a.
o

If a =1 it may be shewn by Art. 51 that the definite in-
tegral is zero.
'We may put the result in the following form ;
f'log (a* — 2ac cos z + ') dz = log &,
o

where &* is the greater of the two quantities o' and ¢', and
is equal to either of them if they are equal.

By differentiating this result with respect to a we arrive
at the result which constitutes the last example of Art. 50.
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288. By integration by parts we have

flog (1 —2a cos = + a') d
=wlog(1—2acosz+a’)—2afl—_i2:%. |
_Hence, if a be less than 1, } l

*  gsinzdr

_remxdr _Tm s is, T .
. T-%acszta 2alog(1+a) , that is, 2 log (1 +a);

if @ be greater than 1, the result is

T T . T 1
2 log (1 +a) — = loga, that is, = log (1 + ;) .

289. In like manner we have, if » be an integer, |

f"cosra:log(‘l—2a cosz+a’)da:=—7;ra', or—?-:a", t
]

according as a is less or greater than unity.

290. Integrate by parts the integral in the preceding |
article; thus we find

*sinzsinrede o ., or T a™
o 1—2acosz+a’ 2 2 !

according as a is less or greater than unity.

291. Similarly from the known expansion
1-a'
1—2a cosz +a’
=1+ 2a cosz + 2a’ cos 2z + 2a’ cos 3z + .....

* where a is less than 1, we may deduce some definite integrals;
thus if » is an integer

*__cosrzdr _ md

o1=2acosz+a' 1-a*’

— e



.DEFINITE INTEGRALS, 255

for every term that we have to integrate vanishes with the

& -
assigned limits, except 24" f cos’ raz de.
* °

o 1 dx
292. To i%nd the value offo 147 I—2acoscn ¥ a"
1 .
I—2acosczta be expanded as in Art.

291; then each term may be integrated by Art. 286, and the
results summed. Thus we shall obtain

The term

1 14ae®
1—a* 1 —ae*

d
3

293. Similarly,

f log (1 — 2a cos cz + o) lf_a;,=7rleg(l-—ae").

294, It is also known from Trigonometry that

sin cx
1 —2a coscx +a®

= sin ¢z + a 8in 2¢x + o’ sin 3¢z + ...,

a being less than 1. Hence by Art. 286, we obtain

z sin cx dx _m
o (1+2°) (L—2acoscx +a°) 2(¢—a)”

This also follows from Art. 293, by differentiating with
respect to c.

" 295, Tofind [ %2 g,
)

l—-2x

- By expanding (1 —x)™, we find for the integral a series
oof which the type i3 :

f:w'log z dz.
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By integration .by .parts this is seen to be equal to
Hence the result is

~ T
1 1 1
—{1 +?+?+Z’+""}’

that is, by a known formula, — %’ .

z sin zdx

296. TO ﬁndf° ﬁm .

Expand the factor {1 + (cos )%}, and we find for the
integral a series of which the type is

(-1)* f "zsinz (cos z)™ d.
o
By )integration by parts this may be shewn to be equal
(-1)*=
2n+1 °
Hence the result is

1.1 1
W{l—§+3-7+ ...},
2

that is, by a known formula, 7—;- .

to

297. Let v denote &*V(-1), that is, cos = + 4/(—1) 8in x;
then if £ denote any function, we have by Taylor’s Theorem,

Sfla+9v) +fla+v) .
=2 {f(a) + £ (a) cosa:+f:1—".(%) cos 2z + } .
And
1-¢

1—%cosz+¢ 1+ 2¢ cos 2 + 2¢* cos 2 4 2¢* €08 3% + vvvnee




_DEFINITE INTEGRALS, 257
Therefore

f. flatr) +flot+o™) o i?llc' { fl@)+¢f (@) + 1_6."5 £"(a) +}

o 1=2ccosz+c

12_7rc,f(a+c).

In this result it must be remembered that ¢ is to be less
than unitﬂ{ and the functions fg; +v) and f(a + ™) must be
such that Taylor’s Theorem holds for their expansions.

~ In a similar way it may be shewn that

[AetD=fCt ) o ada=TYD if(a 1) -1 (o),

r 11— -
and fow—;c:’%,V(a+v) +f(a+v )}da:

== {f(a+0) +fla)}.

Substitution of tmaginary values for Constants.

298. Definite integrals are sometimes deduced from
known integrals by substituting impossible values for some
of the constants which occur. is process cannot be con-
sidered demonstrative, but will serve at least to suggest the
forms which can be examined, and perhaps verified by other
methods (see De Morgan’s Differential and Integral Calculus,
p- 630). We will give some examples of it.

“We have fe"’x"‘da:= T (n).
0 -

For p put a+54/(—1), and suppose r=s/(a’+?*) and
tanf=-, so that p=r{cos@+4/(—1)sinb}; thus
f ”e‘{“"" V(-Dlzg™ dgs = 7" {cos nb — ¥/ (— 1) sin 20} T (n).

[ ]
T.I.Co - 17
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Thus by separating the possible and impossible parts we
have
b
© - T'(n) cos (n tan™ -
f "~ ™ cos b dox = ( a) .
[

(a*+ B
T (n) sin (m tan™ %)

f e™ o™ gin bz dor = r
.ve ( a? + 62)2
For modes of verification see De Morgan, p. 630.

299. In ;the formula

[fomarsts

change a into li—://é——l)c, thus

fme‘MV(“)th 1- ‘\/("1) ‘\/7'

T2 «/2’
therefore
‘, fn{cosca:’ V=1) smc’a:’}dz 1- *ég‘l) z’;
.. ® _ AT
therefore , fcosaz*dx_m,

N7
@ o fsmc’a:’d’v o3

If we wnte y for c%*, these become

f"sinyd:/ cosydy \/
o VY o 2°
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© 300, In the integral ] (”""a#)"da: suppose. y = v/k;

thus the integral becomes 7F f e (#57) dy, which is
known by Art. 281, Thus ’

f (#45)* g = —Ll/l'e—m :

Now put cos 0 +4/(—1) sin@ for %; thus the nght-hand
member becomes

- 1. 5 's/_’ﬂ' e_za{coguv( -1 sing}
cos o + /(= 1) sin 5

that is,
1/21{003 (2a Si?.a +-g) —#/(~-1) sin (2(1 sin 0 + g)}e—n c‘oco.
" Thus f o (#r)eom oo {(w’+§) sin G}a'!:v

[

= %r —3acosfog <2a gin 0 + g),

[Feerdtin ffors L) snefae

._\/7‘. —2a €08 6 o3 o 9)
=3 a cos sm(2a51n0+§ .

EXAMPLES.
(a:’+a’)da: g, @+
1. Evaluate f TEAEB ..Result. T
2. Evaluate [" cos (a tan x) dz. " Result. ’ge"'.
. o .

17—2
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™~

10.

11.

12.

EXAMPLES,

Evaluate f: ain-1¢? dop, Result. ;1' .

f .i (a* cos’a:(-lfb’ sin’z)* = % (l' + ;;—) .

Prove | “an ) dp=75 [ 5+ 1o (@) - 1.

Prove | j:./(cot Hap= [’-2' +log (W(2) + 1}] :

Find the limiting value of ze~# f .e"’dfc when z=o.
’ Result. }.

b

dfo=log;.

Shew that f “cosaz —cosba aa:; cos b

If F(a:, ) be any symmetrical function of z and 5

then
dx

sl

If F(x) be an algebraical polynomial of less than =
dimensions
sF(x)de 1 d*

f, @—oF [n—1d {F (0) log 3= }

Prove that f’ €% cos (sin 6) df = 2m.

iy(1—c)db . s .
Prove that f V(_c cf))s" 7 VZ; ) when ¢ is indefinitely

. nearly equa.l to unity, = being a positive quantity.
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14.

15.

16.

17.

18,

19,

EXAMPLES. _ 261

Evaluate f " (@ co8 8+ b sin 6) log (a cos*8 + b sin’6) d6.

Resilt, 25 {1og‘a P LY/ B «./é}

V(@=08)"" «aj’

supposing a greater than b.

Shew that
. 142ncosax+n' dz_ o
f, log 1+2ncosbr+n = =log (1 +n) log?,
1 b . .

or log (1 + -ﬁ) log;; , according a8 n is less or greater

than unity. ’
Find the value of

@®
f {e-9ameaV(-1) — g=bu-pav(-1} L}
&
L]

where @ and b are positive, but a and B positive or
negative; and shew that it is wholly real when

a=l
a &'

: .
Prove that f cot? (1—z+a")de= 7—;- log 2,
°

' dz 1
Prove that f: ira log (a: + ;’) = log2.

From the value of f ° $10% % deduce that of
(]

z .
J, (2
Result, The two integrals are equal.

(20)* (25)*
(a"i' b 2(a+d) ¢

Prove that f : (G-" —

e—&!

)dx=log
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20,

21.

22.

23'

24.

25.

26.

27.

28.

29.

EXAMPLES.

Shew thatf %%?&c=w

© & B
Shew that f (¢ #—e?)dr=(b—a)y=.
Eﬁiolutwm of Senate-House Problems, by O'Brien and

P44
e+1, o

Shew that f log 2l a=T.

Prove that a:" - A‘f:—log— , and reconcile with
this equa.tlon the result of transforming f Torz o‘iw by
making o’ =y. :

r n+1
Shew that f sin*@ dﬂ—ﬂ M
2 r (n + 2)
. 2
‘ 18 (I —2z)™ d I"(l) I'im) 1
Shew thatf Bta)™ — T(tm Fliot

7 cos¥! @ sin™'6 df P(l) I'(m) 1
Shew‘that/o {acos’0+bsin’0)™ 2T (I+m) a6

tan*6 d6 ™ 1

SO+ omn0 2 cos §nm l—-bu;m :

Shew that f
0

n being less than unity.

* sin*'0 df P(g) ’ e
Shew that j e )

1 zﬂ-lch o

mm*

Shew that =
' *(1—a¥)n nsmT




30.

31.

32.

33.

34..

36.
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! 'de K
Shew that fo (I+ex)(1—)* (1+c)*sinar’
. Ly ‘.
Shew that [ SRZIE@ g o 4T o 4T, s

cording to the values of a and ¢,

Trace the locus of the equation
y'=f smﬂgos Gwda'
[ g

Trace the locus,of the equation

% =f'log {1-26%cos 6+ ™} df, . .
[}

where u=sin_.

Trace the locus of the equation

_/% " zcosbdb .
V=) V@ +2z8m0+1)"
2

in which the sign of the squa.'re root is always taken so
as to make the quantity in the denominator positive.

Shew that
T 7w

f;jisinz sin™ (sin & sin y) dew dy =Z-3"
0’0o .

_Compare the results obtained from

fo “./.: sin az €™ da dy,

by performing the imtegrations in different arder.
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37. Find the value of f' ¢~ dz, and hence shew that
0

f(‘;’;+ %.') A= 5‘::,""= 5f“(§ - ‘“?') oI5 d.
° Jo
38. Shew that

VA=2—8) b g =T (T

ﬁ«/(l i ) dzdy=y (2 1)’
the inte, being extended over. all the positive
values of z and y which make z*+ 3* not greater than
unity. »

39. Shew that

-

n4+l

[ V(l_i”f-';,f’i';-_..j,=2‘,r’i;ﬂ},

the number of variables being n, and the integration
being extended over all positive values which make

not greater than unity.

40. If A°+A‘w+Aﬁ’+oo-¢oo =F(z),
and a,+ ax + a2’ +...... = f (),
prove that 4da + 4,00’ + daz' +......

=gz T+ FO} {70 +f 0} d0 - 40,

where u =2’ V(-D) and v =ze~VCD,

41, If the sum of the series a,+ a2 +ag'+...... can be
ex'pressed in a finite form, then the sum of the series
a, +a'z" +a'z' +...... can be exgressed by a definite
in g'n;l Prove this, and hence shew that the sum of
.the squares of the coefficients of the terms of the expan-
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sion of (1+«)* when n is a positive whole number,
may be expressed by _

2: f icos" 0 cos'nfdb -1,
™ []

Prove that
f cos cx dx T 6"}

12 - 1+0-°"'1+0°

Shew that

f;¢ (sin 22) cosmd'c=ﬁ¢ (cos*x) cos z dz.

(Liouville's Journal de Mathématiques, Vol. XVIII
page 168.)

Shew that  1-Z 4.2

2—l+2T4!"- assen
2 i .
-—-;f.eos(wmny)dy.
Prove that
[[eotae v dym
0 o

e M
n'sin —

(See Art. 66; and change the variable y to u where

y=ux.)
Shew that

-weoun— sin 39) CO8 a'
f: ) {z‘ 8in 20 + —; 3

=m0 (0+a);

cos 26} d'n

8 being comprised between the limits + 7 .
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CHAPTER XIII
EXPANSION OF FUNCTIONS IN TRIGONOMETRICAL.SERIES..

301. THE subject ‘we are about to introduce is one of the
most remarkable applications .of the Integral Calculus, and
although in an elementary work like the present, only an
imperfect outline can be given of it, yet on account of the
novelty of the methods, and the importance .of the results,
even such an outliné may be of service to the student. For
fuller information we may refer to the Differential and Integral
Calculus of Professor De Morgan. The subject is also fre-
quently considered in the writings of Poisson, for example, in
his Traité de Mécanique, Vol. 1. pp. 643—653 ; in his Traité
de la Chaleur; and in different Memoirs in -the Journal de
UEcole Polytechnique. The student may also consult a Me-
moir by Professor Stokes, in ‘the 8th Vol. of the Cambridge
Philosophical Transactions, a Memoir by Sir W. Hamilton, 1n
the 19?£ Vol. of the Transactions of the Royal Irish Academy,
and ‘a Memoir by Professor Boole, 1n the 21st Vol. of the same

Transactions. .
302. It is required to find the values of the m constapts
A4, A, 4,,...4,, so that the expression .
-Asinz + A, 8in 2z + 4, 8in 3 + ....oo+4,, Sin ma
may coincide in value with an assigned function of = when =
has the va.lueg‘()’, 26, 30, mb, whexje‘ 8=. ;:'_—1 .
Let f(x) denote the assigned function of z, then we have
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by hypothesis the following m equations from which the
constants are to be determined, -

. J(6) =4, sin6 + A4,sin 20 + 4,80 30 +......+ 4, sin mé,
J(20) = A,8in 26 + 4, sin 40 + 4,5in 66 +......+ 4, sin 2mb,

€00 000c00er0es0b00000c00000000000 000000000000

S (mb) =4, sinmb+4,s8in2mf+4,sin3mf +......+ A,, sinmmb.

Multiply the first of these equations by sin 7, the second
by sin 279, ...... , the last by sinmr@; then add the results.
he coefficient of .4, on the second side will then be

sin 70 sin 80 + sin 270 sin 256 +...... + sin mrf0 sinms6 ;

ﬁe shall now shew that this coefficient is zero if 8 be different
from r, and equal to § (m + 1) when s is equal to r.

First suppose s different from ». Now twice the above
coefficient is equal to the series

cos (r —8) 0 4 cos 2 (r — 8) 0 +,.....4 cos m (r — ) 0,
diminished by the series
€08 (r + 8) 0l+ cos2 (r+8) 0 +......+ cosm (r + ) 0.

The sum of the first series is known from Trigonemetry to
be equal to '

sin (2m +1) TS0 _gip £ =08

. (r—s)6 , ?
2sm—————-—2 _

"sinA {(r—a)';r—-(r——;)—g}_sin@

that is, to - NICETL
: 2 sm—-2—

This expression vanishes when »— s is an odd number,
and is equal to —1 when 7 —s is an even number.

The sum of the second series can be deduced from that of
the first by changing the sign of ¢; hence this sum vanishea
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when r +# is an odd number, and is equal to —1 when r +3
is an even number. .

Thus when s is different from r, the coefficient of 4, is
zero.

‘When s is equal to », the coefficient becomes
gin'rd + sin’ 210 + ...... + sin’ mr6,

that is, %— % {co8 20 + cos 470 +......+ cos 2m»6}.

And by the method already used it will be seen that the
sum of the series of cosines 18 —1; thus the coefficient of
4,18 § (m +1).

Hence we obtain

A= m2+ - (60 r8£(6) + 5in 201 (26) +.vvvvvt sin mrd f ()},

and thus by giving to » in succession the different integral
values from 1 to m, the constants are determined.

Now suppose m to increase indefinitely, then we have
ultimately

4,=2 f sin 7o (v) do.
K [}
And a8 f(z) now coincides in value with the expression
4, sinz + A4,8in 22 +......

for an infinite number of equidistant values of = between
0 and 7, we may write the result thus

f(z)=%2;'sinnwf:sinnvf(v) dv,

where the symbol 2 indicates a summation to be obtained
by giving to n every positive integral value.

303. The theorem and demonstration of the preceding
article are due to Lagrange; we have given this demonstra-
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tion partly because of its historical interest, a.ndwutl because
it affords an instructive view of the subject. ¢ shall how-
ever not stop to examine the demonstration closely, but pro-
ceed at once to the mode of investigation adopted by Poisson.

304. The following exgaansion may be obtained by ordi-
nary Trigonometrical methods, .
1-%

l—2hcos’r—(”—l——z)+h'

- 4 2A"cos

o (v — x)
]

=14 2h cos

87 (v—2a)

+ 2A° cos

27 (v — )
--.‘_7—— +‘.C,

% being less than unity, so that the series is convergent.

Multiply both sides by ¢ (v), and integrate with respect to
v between ie limits — 7 and 7; also makeﬁpproach to umt{
ag its limit. On the right-hand side the different powers of
become ultimately unity. The numerator of the fraction on
the left-hand side will ultimately vanish, and thus the inte-
gral would vanish if the denominator of the fraction were
never zero. But if x les between —! and I, the term

Tw-2%) (vz— Z) will become equal to unity during the integra-
tion, and thus the denominator of the fraction will be (1 — A)?,
and will tend towards zero as & ;I;ﬁroaches unity. Thus the
integral will not necessarily vanish; we proceed to ascertain
its value, Let v— 2 =2 and A =1-g, thus

A=MW)d  _[g1+RP@+e)ds

Now the only iart of the integral which has any sensible
value, is that which arises from very small positive or nega-
tive values of z; thus we may put

— 2k cos

e _ W2
2l 21!

“and $@+2)=¢();

sin
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and the integral becomes
dz dz
y(l+h)¢<w)[—-,—,;—=z =2g$ (»’v)[—?—;
9’ + - .9’ + Z!z

T oow gl”

Suppose a and — B to be the limits of z; we thus get

O

Hence, finally, when g is supposed to vanish, we have ’
2l¢ (). Thus it  lies between — yand l, ’

$ (@)= él_l f_‘,"’ (v) dv + ll 2 f_‘;ﬁ (v) cos ’—'1(’;—_1)&;.

If however =1 or —/, then the integral on the left-
hand side has its sensible part when v is indefinitely near to
land —7; we should then have to perform the above process
in both cases, but the integral with respect to z would only
extend in the former case from — 8 to 0, and in the latter
from 0 to a. Hence instead of 2/¢ () on the left-hand side,

we should have
@O+ (-0.

Thus we have determined the value of the right-hand
member when « lies between ! and —/, both inclusive; its
value .in other cases will be determined in Art. 311.

305. In the same way as the result in Art. 304 is found,
we have, if we integrate between 0 and /,

@)= [0 Do+ KRES "D o)

this holds if = has any value between 0 and /; but when
« = 0 the left-hand member must be } ¢ (0), and when =1

the left-hand member must be 3 ¢ (!). Thus we have deter-
mined the value of the right-hand member when z lies
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between ! and — 7, both inclusive; its value in- othex cases
will be determined in Art. 311.

Similarly : :
0—2lf¢(v)dv+ 2°°f¢() ”"‘”*“’)d ....... (@);

this holds for any value of z between 0 and /; but when
« = 0 the left-hand member must be 1}4) (0), and when 2 =1
the left-hand member must be §¢ (). -

From (1) and (2) by addition
t
¢ () =7 ¢ (v) dv +7 2” cos 22 008 - 0 (v) dv...(3).
This holds for any value of = between 0 and [, both in-

clusive.
From (1) and (2) by subtraction

$(@) =7 2rsi ””” 'sin 272 8 (5) dvcen (4).

T]ns holds for any value of = between 0 and 7 both exclu-
sive; and when = = 0 or [, the left-hand member should be
zero.

Equation (4) coincides with Lagrange’s Formula.

‘We may observe that either of the formule (3) and (4)
may be de uced from the other. Suppose we take (3) and

wnte sin T ¢ () instead of ¢ (z). Thus
sin '”Tw ()= %f:sin ?4; () dv

t

+gE°cos’%a—’f cos’#sm 7 ¢(v)dv.

nmy . mwe 1. (h+1)7rv ‘1. (n—1)mv

Now cos—l—sm 7 —-2-sm ; § sin —"—;

:ﬁd thenefore it will be found that the result may be exhibited
us, . ]
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sin 77 ¢ ()

%E:'{cos ("_;)m’—cos (”—+;)m}f:sinnil”¢(v)dv;

also  cos (n_ll)m-—cos ("+;) Ww=2'sin'—"l'-'—z sinw—l?;

and therefore by division by sin 7" we obtain the for-
mula (4).

‘We will now give some examples.

306. Expand z in a series of sines. Take formula (4) of
Art, 305, and suppose {=r; then

. vcosny  sinny
vsmnvdv=——n—+ ol

therefore f‘vsinnvdv=:—:ifnbe odd, a.nd—:‘-':ifnbéeven.
]

Thus

x =2 {sinz—} sin 22 + } sin 8z ~ } sin 4z +......}.

This holds for values of = between 0 and =, and as both
gides vanish with & it holds when #=0; and it is obvious
that if it holds for any positive value of = it holds for the

corresponding negative value; hence it holds for values of =
between — o and 7, exclusive of these limiting values.

307. Expand cosz in a series of sines, Take formula
(4) of Art. 305 and suppose l=1r; then

]cosv sinnva=1}f{sin(n+1)v+sin(n—1) v} dv

cos(n+1)v  cos(n—1)v]
-i{ n+1 + n—1 v}’
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therefore f “cosv sinno do =0 if n is odd,
[}

=n’221 if n is even;
therefore
»
cosx = %{; sm2a=+ — sm4a:+ + li(——)-nsin_m:+...} .

This holds from =0 to =, exclusive of these limit-
ing values.
308. Expand « in a series of cosines.

Take formula (3) of Art. 305, and suppose /== ; then

vsinny = cosny
fvcosnvdv= . + ;

nﬁ 2

therefore f' veosnv dv =0 if » be even, and — ;—f—,— if n be
odd; and ° =
vdv=_
[[ea=%
T

4 1 1
thus a:-5—1—'_{cosw+§;cos3a;+g,cos5w+ ...... }.

This holds from =0 to & == both inclusive.

If we put w=£— y, we obtain the following formula,

which holds for any value of y between — - a.nd 2 , both in-
clusive,

4
y——{smy— sin 3y + 5,sm5g/— v}
309. Expand ¢®—¢-% in a series of sines.
Here f ) (e*® —e~%) sinnv dv=— n(er—et) CO8 1.
[}

@ +n?
TTC 18
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Therefore = o —® = = sin 2 _25in2“’+3sin 3z
26 —e¢% I't+a' 2°+d  F+ad

== ssscse

310. Expand es(~2) 4 ¢-a("-2) in a series of cosines.

- a (%" — e—97
Here j {e8(r=2) 4 g=8(e=9] cos nw dv =_(a_,+T_) ,

and f " (ese-9) 4 g=ate-0) dy = e‘"_’;e_’f i
9

Therefore - erlr-5) fe-alr-al 1  cosz  cos2x
T 2 F e @t rrataratoee

311. We have shewn that the formula (8) of Art. 305
holds for any value of = between 0 and 7 both inclusive;
it is easy to determine what the right-hand member is equal
to when « lies beyond these limits. Suppose z positive, and
between ! and 2[; put =20 —a' so that z' is less than 7,

then
nme nmrx' nmx'
cosT = CO08 (2mr——z—) = cos—l—-;

therefore the value of the right-hand member is ¢ (z'). Next
suppose x greater than 2[; and suppose it equal to 2ml + o',
where &' is less than 27; then

nwx

nwe
cos ——l—- = C08 _l— ’
so that the value is the same as it would be if ' were put
instead of z; that is, the value is ?(a:’) if &' be less than /,
and ¢ (2] —<) if &' be greater than /.

It is obvious that for any negative value of & the value is
the same as for the corresponding positive value.

Similarly we may shew that if « is positive and = 2ml+ &,
the value of the right-hand side of equation (4) of Art. 305 is
the same as if ' were put instead o% z, and is ¢ ;:v') if ' be
less than [, and — ? (2l — ') if «' be greater than {. And for
negative values of z the value is the same numerically as
for the corresponding positive value, but with an opposite

sign.
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312. It may be observed that in the fundamental demon-
stration of Art. 304, we suppose that when % approaches unity
as a limit, the expression
fh“;/) (v) cos’i(vT_ﬁ-) dv
may be replaced by
‘f¢ (v) cos -n—ﬂig_—w) dv,

however large » may be. 'We may shew that no error arises
from this supposition, by ‘froving that the latter integral
vanishes when 7 is increased indefinitely. We have

f ¢ (v) cos —— (vl_ 2) gy = ‘l‘fri”) gin 7T (v —2)

[}
nm (v—2x)

- % fgb’ (v) sin -——l———-dv,

which shews that the integral on the left-hand side will vanish
when 7 is infinite, at least if ¢'(v) be not infinite.

313. We have not yet alluded to one of the most re-
markable points in connexion with the formula (3) and (4) of
Art. 305. In these formul® ¢ () need not be a continuous
Sunction ; for example, from =0 to £=a we might have
¢ (z) =f, (x), then from z=a to =05 we might have
¢ (z) = f: (x), then from z=25 to #=c we might have
¢ (z) =f, (x), then from z=c to =1 we might have
¢ () =f, (®). The formula (3) for instance would still be
true for all values of z between 0 and 7 inclusive, as is evident
from the mode of demonstration, except for the values where
the discontinuity occurs. When for example z=a, then the-
value of the right-hand member would not be f,(a) or £;(a)
but }{f (a) +f (a)}. If therefore for z =a we have
J. (@) =f£,(x), the formula holds also when = =a.

314. Find an expression which shall be equal to ¢ when
x lies between 0 and @, and equal to zero when z lies between
a and /.
18—2
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Take formula (3) of Art. 305. Here ¢ (v) =c¢ from v=0
to v =a, and then from v=a to v=11it is zero; thus

i
fcosm‘vad)(v)dv
0
becomes cfacosmdv-_-il sin =2
o l nwr l

therefore the required expression is
ca 2, . wma TX . 2ma 2wz
‘l—+;r {Sm'—z- cos——l——+~}sm —Z—COS—Z-'—
wa  3mwx
- }s

. 3
+§.sm T B+

this will give }c when z = a.
Or we may use formula (4) of Art. 305. Then

cfasin#dv =1%r (1 - cosn—‘lz—"r) y
and we have for the required expression '

-2—C{versﬂsin7—r—m+1} rswsin&r—m
o 1 J TIves 7 7

} ers?ﬂgsinalw .
+3v i 7 Foeeeees };

this gives 0 when =0, and 4c when z=a.
315. Find an expression which shall be equal to Zz from
z=0to a:=% , and equal to & (I — ) from z=5tow= A
Here '

]
i 3 1

fgb(v)cosn—;r-vdv=f kvcosﬁ%”d'v+fzk(l—v)cos£? dv
[] [] _..

kl’{l A | nar 1} )2 . N

=— {—8I0 —+—5-C08 — — +~—(smmr—sm—")

w nmw nmw 2
nw

2 n'r

k<1 . 1 . nr cosnmr °O° 7}
—= )=sinnr— —sin — + -
P n
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]
This is — % when 7 is of the form 4r+2, and 0 in every

other case, and

fl¢(v) dv=kf:_vdv+7cf;(l—v) clv=kfl’;

thus the required expression is

Y_B Loty )

If we denote this by y, then from =0 to  =4{ both in-
clusive y=~Z%z, then from =4l to =1 both inclusive
y=Fk (I —); for values of = greater than I the values of y
recur as shewn in Art. 311. Thus the value of y is the
ordinate of the figure formed by measuring from the origin
equal lengths along the axis oty z to the right and left, and
dra\iving on each base thus obtained the same isosceles tri-
angle.

gAs another example we may propose the following:
find a function ¢ (z) which shall ge equal to z from =0 to
x=a, then be equal to a from z=a to =m—a, and then
be equal to mr—z from z=mw—a to z=m.

The result is
$ (@) =2 {sin a sin 2+ sin 3 sin 82 + % sin S sin 50+ ..}

this is true from = =0 to # = both inclusive.

The student may verify the following examples.
If = be numerically less than a the expression

2
8a so {cos (2n+1) 52%’}
e 2n+1
is equal to @ — « if  be positive, and a + z if = be negative.
Prove that for values of z between — 7 and 7 inclusive
& = cos2zx cos 3z

TRt Ty

LXXTREY
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This may be obtained from Art. 308 by integration; or
from equation (3) of Art. 305.

816. Other formule may be given analogous to those in
Art. 805; we will here investigate some. e have from
Art. 305

¢ (@)= Elzf:zﬁ(v) dv +% b f:gb (v) msw dv...(1).

This holds when = has any value between 0 and /; but
when =0 the left-hand member must be ¢ (0), and when
=1 the left-hand member must be 4¢ (!). In the same
manner as this result was obtained we may also prove that

2 (z) = 3 f:qb (o) do+ S 37 f'¢ (0) cos T2 g3,

This holds when 2 has any value between 0 and Z; but
when @ =0 the left-hand member must be ¢ (0), and when
« =1 the left-hand member must be ¢ ({).

Subtract (1) from (2); thus

@ =1z; f'qb(v) Cr-D)rlo=t)g,.....q)

This holds when  has any value between 0 and I; but
when =0 the left-hand member must be ¢ (0), and when
x = the left-hand member must be 4¢ (7).

Now in the same manner as (3) was obtained, we may
obtain the following result, starting with v+ =z instead of
v—u,

0=1sr f'¢ () eos EDTOET) 4, (o),

This holds when = has any value between 0 and 7; but
when =0 the left-hand member must be 4¢ (0), and when
a =1 the left-hand member must be —§ ¢ (?).

From (3) and (4) by addition and subtraction we obtain
$(e) =337 con BN [ ) con B (5,

$ (@) =7 5rain 22 ‘)”‘”fqb() gin G2 7Y l)’"’dv..(e).
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These hold when « has any value between 0 and !/ in-
clusive, except that when z =0 the left-hand member of (6)
must be 0, and when @ =1 the left-hand member of (5) must
be 0.

317. We shall apply the formula (5) of the preceding
article to establish a remarkable theorem first given by John
Bernoulli. Let there be any curve 4B the tangents of which
at 4 and B are at right an yl,es; let the involute of this curve
be formed beginning at A4, and denote it by AC; let the
involute of AC be formed beginning at C; and so on con-
tinually ; then the ultimate figure obtained will be a cycloid.

Let s be the length of the arc of the original curve mea-
sured from A to any point P; let p be the radius of curvature
at P, and @ the inclination of the tangent at P to the tangent
at A. Let p, be the radius of curvature at the corresponding
point of the first involute, p, that of the second involute,
p, that of the third involute; and so on. Then @ expresses
the inclination of » Pss Pes ++» to the normal of the original
curve at 4; and 6 also expresses the inclination of p,, p,,
Pss -+ to the normal of the original curve at B. Moreover
P> Pssy Ps» --- Vanish when §=0; and p,, p,, p,, ... Vanish

when 0='-’2r-.

0
Now p=%, and p,=s; thus pl=fpd6.
[ ]
. i
Similarly, p= f' p, d6,

Py = fo 'P, do,

3
pe= fap. db,
and so on.
Now in formula (5) of the preceding article suppose

! == ; then since p is some function of 6, we have

oy

p=A4,co80+ A4,c0830+.4,co856+...
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where 4,, 4,, 4, ... are certain constants determined by that
formula (5).

Thus

pu=4,5in 0+ 4,5in80+1 A,sin 50+ ......
pu= 4, 0080+ 53 4,0830+ 3 A,co8 50 + ...

po=A,8in 0+ 5 A,5in 30+ 5 4, 5in 50+ .....

Proceeding thus we obtain, when # is indefinitely large,
pa=A,800, or p,=A4 cos6;
.and these equations represent a cycloid ; see Art. 105.

We may proceed to examine the nature of the result
when the tangents at the extremities of the original curve
are not inclined at a right angle. SuI;pose these tangents
to be inclined at an angle a; and put a for 7 in the formula
(5) of the preceding article. Then we have

370 5
p=A1cos"2—rg+A,oos—2—a+A,cos2L:+ ...... ;
and b);lproceeding in the same way as before we arrive at
the result
70

wf
2a’

2g° OF pa=FKsin

Pa=1Fkcos

where k=A, (%rﬂ‘)'

If & were a finite quantity, we should thus obtain an
epicycloid if a is greater than g ', and a hypocycloid in which
the diameter of the revolving circle is less than the radius of
the fixed circle if « is greater than g ; see Arts. 110 and 111;
and this is the usual statement of the results. But it will be
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observed that % becomes indefinitely great in the former case
and indefinitely small in the latter case ; so that in the former
case the radii of the fixed and revolving circles must be sup-

osed to increase indefinitely, and in the latter case to diminish
indefinitely.

318. In the formula
¢(m)=%lf'¢(v)dv+ll2:°f‘ mr(v m)¢(v)dv,

suppose ! to increase without limit; then if ¢ (v) be such that
the term f ¢ (v) dv vanishes with 1 7 Ve have

¢ (z) =7_r,[ f cos u (v — ) ¢ (v) du dv.
This is called Fourier's Theorem.

MISCELLANEOUS EXAMPLES.

1. Change the order of integration in the expression
Vi@ -2%)
f f ¢ (2, y) dzdy.

2. "Change the order of integration in the expression

[ s@udedy.

3. Transform f / ¢ (x, y) dedy into an integral with
respect to % and v, having given u=y+ 2, y =uv;

1{) determine the limits of the new integral.
4. Transform f f ¢ (x,y) dedy into an integral with

res({)ect to u and v, having given y +czx=u, y=wuv;
determine the hmlts of the new integral.
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5. Transform the integral
[[[e-9 -2 -2 deayas

into one in which u, v, w are the independent varia-
bles, where

v’ = zyz, %=£+ +%, w=2"+y" +2\

6. Prove that

([ oaf e

where t=2" and T=1£. _
(See Arts. 263 and 66 ; and transform as in Art. 242.)

7. Prove by transforming the expression from rectangular
to polar co-ordinates that the value of the definite
integral

f"fe-(zwwy*muwdmdy
oJo

i8 equal to }y7w F sing) , where F' (sin-g) denotes a
complete elliptic function of the first order of which
sin; is the modulus.

8. Prove that f ttan 0log cot 0df = ;’8— R
o

9. Prove that
f e~ ZncotB gin (na’ + a) da = sin (a + B) K/(W 8‘111;2,9) ]

[

10. Shew that

Ft‘m—l (nW/(1 ~ tan')} dz = 5 tan™ n ¥2 ~ 7 cot™ et :‘”—') .
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'sin(gtanf)

1. ¥ fE)=) — 2 df, determine the geometrical
meaning of the equation y =z f(sinz).

12. A curve of double curvature revolves round the axis
of z; shew that the surface generated

=27 [V{(ydy + o) + (47 + ) (),
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CHAPTER XIV.

APPLICATION OF THE INTEGRAL CALCULUS TO QUESTIONS
OF MEAN VALUE AND PROBABILITY.

319. WE will here give a few simple examples of the
application of the Integral Calculus to questions relating to
mean value and to probability.

Let ¢ () denote any function of «, and suppose z succes-
sively equal to @, a+ %, a+2k,... a+ (n—1) k. Then

$(@)+d(a+h) +dlat2m)+...+plat(n—1)4)

n

may be said to be the mean or average of the n values which
¢ (x) receives corresponding to the n values of z. Let

b—a=nh,
then the above mean value may be written thus,
[$@)+d(at+h)+d(a+2h)+... +dla+ (n—1)A}] A

b—a

Suppose a and b to remain fixed and » to increase inde-
finitely ; then the limit of the above expression is

[$@a
=
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This may accordingly be defined to be the mean value of
¢ () when = varies continnously between a and 5.

320. As an example we may take the following ques-
tion; find the mean distance of all points within a circle
from a fixed point on the circumference. By this enunciation
we intend the following process to be performed. Let the
area of a circle be divided into a large number = of equal
small areas; form a fraction of which the numerator is the
sum of the distances of these small areas from a fizxed point
on the circumference, and the denominator is n; then find
the limit of this fraction when = is infinite,

Suppose 7, 7,,... 7, to denote the respective distances of
the small areas; then the fraction required is

1
;{r1+ Tot oo+ 7.}

Multiply both numerator and denominator by » A6 Ar, which
represents the area of a small element (Art. 148), thus the
fraction becomes

rt+r+...+r}rAGAr
nr &G Ar ’

The limit of the denominator will represent the area of the
circle, that is, m¢®, if ¢ be the radius of the circle. The limit
of the numerator will be, by the definitions of the Integral

Calculus, f f 7*df dr, the limits being so taken as to include

all the elements of area within the boundary of the circle.
Thus the result is

f 3 f’cmar’ do dr
[}

”
2

.
e’

This will be found to give .



286 APPLICATION OF THE INTEGRAL CALCULUS

321. The equation to a curve i8 r =c sin 6 cos 6, find the
mean length of all the radii vectores drawn at equal angular
intervals in the first quadrant.

It easily follows, as in the last article, that the required
mean length is .

f_’c sin 6 cos 0 d6

T ’

2
that is, <.
™

Again, suppose the portion of this curve which lies in the
first quadrant to revolve round the initial line, and thus to
generate a surface. Let radii vectores be drawn from the ori-
gin to different points of the surface equably in all directions:
1t is required to find the mean length of the radii vectores.

The only difficulty in this question lies in apprehending
clearly what is meant by the words in Italics. Conceive a
spherical surface having the origin as centre ; then by equable
angular distribution of the radii vectores, we mean that the;
are to be so drawn that the number of them which fall upon
any portion of the spherical surface must be proportional to
the area of that portion. Now the area of any portion of a
sphere of radius ¢ is found by integrating

a’ffsinﬂd¢d0

within proper limits (Art.175). Hence asin  Ap A0 may be
taken to denote an element of a spherical surface, and 2ma® is
the area of half the surface of a sphere. Thus we shall have
as the required result

f da’c sin @ cos 6 sin 0 d¢p d

2ma® ’

the limits being so taken as to extend the integrations over
the entire surface considered.
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Hence we obtain

' f"ficsin’a cos 8 dop db
0o

2n

’

that is, %

322. A large plane area is ruled with parallel equidistant
lines ; a thin rod, the length of which is less than the distance
between two consecutive lines, is thrown at hazard on the
a.lx;ea 1,1 find the probability that the rod will fall across one of
the lines. :

Let 22 be the distance between two consecutive lines
and 2¢ the length of the rod. It is easily seen that we do
not alter the problem by supposing the centre of the rod
constrained to fall upon a line drawn between consecutive
lines of the given system and meeting them at right angles,
for the proportion of the favourable cases to the whole number
of cases remains the same after this limitation as before.

Let the centre of the rod be at a distance = from the nearer
of the two selected (farallels; then suppose the rod to revolve
round its centre, and it is obvious that in this position of its

centre the chance that it crosses the line is ;%)- , Where
ccos ¢=ux.

And we may denote By éaf the chance that the centre of the

rod falls between the distances = and x + Az from the nearer
of the two parallels. Thus the chance required will be de-
noted by the limit of the sum of such quantities as 2¢ %—z

T
that is, it will be
2
;‘_;[¢dz,

z
where cos ¢ = e
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The limits of « are 0 and ¢; hence the result
2¢ ; .
=-7r—a- °¢sm¢d¢

_2c

7a "

EXAMPLES.

1. Ifr=f(0) and y=Ff (E) be the equations to two curves,

f(6) being a function which vanishes for the values
0,, 0,, and is positive for all values between these
limits, and if A4 be the area of the former between the
limits =6, and 6 =6,, and M the arithmetical mean
of all the transverse sections of the solid generated by
the revolution about the axis of z of the portion of the
latter curve between the limits # =af, and z = af,,
shew that ‘

27
=g=04

supposing 6, greater than 6,.

2. A ball is fired at random from a gun which is equally
likely to be presented in any direction in space above
the horizon; shew that the chance of its reaching
more than L th ofits greatest range is «/ (1 - —1-) .

m m

3. From a point in the circumference of a circular field a
projectile is thrown at random with a given velocity,
which is such that the diameter of the field is equal to
the greatest range of the dprojectile; find the chance of
its falling within the field. |

1 2,,

Result. 2" m (W2 -1).

———=1
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On a table a series of straight lines at equal distances
from one another is drawn, and a cube is thrown at
random on the table. Supposing the diagonal of the
cube less than the distance between consecutive lines,
find the chance that the cube will rest without cover-
ing any part of the lines.

Result. g , where a is the edge of the cube and ¢ the
distance’of consecutive lines.

Prove that the mean of all the radius-vectors of an
ellipse, the focus being the origin, is equal to half the
minor axis, when the lines are drawn at equal angular
intervals; and is equal to half the major axis when
the lines are drawn so that the absciss® of their
extremities increase uniformly.

An indefinite number of equidistant parallel lines are
drawn on a plane, and a rod whose length is equal to
r times the perpendicular distance between two con-
secutive lines is thrown at random on the plane; find
the probability of its falling upon n of the lines. If

n=r =1, shew that the probability is ;

Two arrows are sticking in a circular target; what is
the chance that their distance is greater than the
radius of the target?

Result, V3.
47

Supposing the orbits of comets to be equally distributed
through space, prove that their mean inclination to
the plane of the ecliptic is the angle subtended by an
arc equal to the radius.

A certain territory is bounded by two meridian circles
and by two parallels of latitude which differ in longi-
tude and latitude respectively by one degree, and is
known to lie within certain limits of latitude; find the
probable superficial area.

T. L C, 19
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10. A line is takem of given length a, and two other lines
are taken each less than the first line and laid down in
it at hazard, any one position of either being as likely
aa any other. The lengths of these lines are & and ¥’;
it is required to find the probability that they shall
not have a part exceeding ¢ in common.

(@a=b—0" +¢c)
Result. @B @—2) "

Camb. Phil. Transactions, Vol. vIIL p. 386.

11. An indefinitely large plane area is ruled with paraliel
equidistant lines, the distance between consecutive
lines being ¢. A closed curve which has no singular

ints whose greatest diameter is less than ¢ is thrown
ggwn on the area. Shew that the chance that the

curve falls on one of the lines is 1—'1_; , where Z denotes

the perimeter of the curve.

12. A messenger M starts from 4 towards B (distance a) at
a.rate of v miles per hour, but before he arrives at B a
shower of rain commences at 4 and at all places occu-

ying & certain distance # towards, but not reachiny
Eeyond, B, and moves at the rate of « miles an hour
towards 4 ; if M be caught in this shower he will be
obliged to stop until it is over; he is also to receive
for his errand a number of shillings inversely propor-
tional to the time occlépied in it, at the rate of n shil-
lings for one hour. Supposing the distance z to be
unknown, as also the time at which the shower com-
menced, but all events to be equally probable, shew
that the value of M’s expectation is, in shillings,

no(l w u(wt+v), u+v
Tt et
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CHAPTER XV,

CALCULUS OF VARIATIONS.

Mazxima and Minima of integrals involving one dependent
variable with fixed limits.

323. THE theory of maxima and minima values of given
functions is fully considered in works on the Differential
Calculus. If, for example, y denotes any given function of an
independent variable «, then we can find the value or values
of  which make y a maximum or minimum, or we can shew
that there are no such values in some cases.

We are now however about to consider a new class of
maxima and minima problems. Let y denote a function of =
which is at present undetermined; and let ¥ denote a given

. dy &
function of x, ¥, %y’ sz“ ‘
relation which must hold between « and y in order that the

integral f Vdx, taken between given limits, may have a maxi-

mum or minimum value. 'We cannot here effect the integra-
tion because y is not known as a function of «, and therefore
V is not known as a function of ; thus the ordinary methods
of solving maxima and minima problems do not apply. We
require tﬁen a new method, which we shall now proceed to
explain, - '

Suppose we wish to find the

324. The department of analﬁsis to which we are about
to introduce the student is called the Calculus of Variations;
its object is to find the maxima or minima values of inte-
gral expressions, the expressions being supposed to vary by

19—2
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assigning different forms to the functions denoted by the de-

ndent variables, It will be seen, as we proceed, that the
method of finding these maxima or minima values is analogous
to that of finding ordinary maxima or minima values by the
Differential Calculus,

325. It will be useful to recur to the method given in
the Differential Calculus, The student will remember that
the terms maxtmum and mintmum are technical terms, which
are defined and illustrated in treatises on the Differential Cal-
culus; and they are used in mathematics in the sense there
assigned to them. Mistakes are frequently made by con-
founding @ mazimum value in the technical sense of the word
maximum, with the greatest value in the ordinary sense of
the word greatest.

Suppose y a given function of an independent variable z;
then if an indefinitely small change is given to , in general
an indefinitely small change is consequently given to y, which
is comparable in magnitude with that given to #. The pro-
cess of finding a maximum or minimum value of ¥ may be
said to consist of two parts, First we determine such a value
of z that an indefinite y small change in it does not produce
in y a comparable indefinitely small change, but a change which
is indefinitely small compared with that of . In the second
place, we examine the sign of this indefinitely small change
which is produced in y by the change of «; and for a maxi-
mum this sign is to be necessarily negative, and for a mini-
mum positive.

We may therefore describe this process briefly thus; we
make the terms of the first order in the change of the depen-
dent variable vanish, and we examine the sign of the terms
of the second order. We shall pursue a similar method
with the problem which we have now to discuss; we confine
ourselves, however, at present entirely to the first part of the
process, and shall hereafter recur to the second part.

326. We have first to explain the notation which will
be used. Let & denote an independent variable, y any func-

tion of @, and (%’ % s --» the differential coefficients of y
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with respect to . 'We shall use 8y to denote an indefinitely
small quantity which may be any function of z; and if u
denote any quantity whatever which depends on y we shall
denote by gu the increment which » receives when y is changed
into y +8y. Thus, for example, consider the differential co-

efficient %; when y receives the increment 8y this differen-

tial coefficient receives the increment (%:/, so that by SZ—Z
Wwe mean %y It is often convenient to use the symbol p
for %; and so also 8p is a convenient symbol for % .
Again, consider the second differential coefficient %;—‘1—{; when
y receives the increment §y this second differential coefficient

. . A . .
receives the increment le‘:/—, and as the second differential

coefficient is often denoted by ¢ we may conveniently use 8¢

for % Similarly » and s may be used for the third and

fourth differential coefficients of y respectively, and & and 8s for
3 4

a d—i‘f and %’ respectively ; and so on.

The differential coefficients are also often denoted b

4,9, y", ...; and thus 8y, 8", 8y, ... may be used as equi-
valent to 8p, &g, dr, ... respectively.

327. The introduction of the symbol & is due to La-
grange. The student will see that this symbol resembles in
meaning the symbol d, which is used in the Differential Cal-
culus. Both dy and 8y express indefinitely small increments;
dy however is generally used to denote the change in value of
a given function consequent upon a change in the value of the
dependent variable, 8y is used to denote the change made by
ascribing an arbitrary change to the form of a function. The
quantity denoted by 3y is called the variation of y,
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328. Let V denote a given function of x, y, -Z—*Z ) % y ve

and let U= f " V dz, where z, and z, are supposed to denote

2,
ven limits. ‘The value of U cannot be found so long as we
o not know what particular function y is of z; but without
knowing this we are able to obtain an expression for the
increment made in U by ascribing the arbitrary increment &y
to y, from which important inferences can be drawn.

Suppose V=3¢ 99,9 9");
then by definition
V=¢ (@ y+8y, ¥+8&/, y'+8&", y"+8&"....)
~¢® %Y, 9 Y" )

The first term may be expanded by the ordinary exten-
sion of Taylor’s theorem ; thus

av

ave dVg, v, GV o
8V=‘(—i§ 8y+_d78y+(—i7"8y +’d_y,,,8y +-.-,

where %’ is the partial differential coefficient of ¥ with

respect to y, also ‘é—;is the partial differential coefficient of 7
with respect to y'; and so on.

In the above expression for 87 we have only expressed
terms of the first order, that is, we have omitted the terms of
the second and higher orders with respect to the small quan-
tities 8y, 8y',.... This we shall continue to do throughout the
remainder of the investigation.

Then
SU= f " SV de

o (dV av ., AVeu, AV o m

%o

!
|
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‘We shall now transform this expression by integration by
parts. For shortness put
v av av av _
__ N; d? _P, dy" = Q, d T =

Then fpsy'dm_ [P28 45— pay - | Z——fSydw

therefore f ' Py de = (Pby), — (Poy),— [ j—f Sy d.

" Here (P8y), is used to denote the value of Pdy when «, is
put for z, and (Pdy), is used to denote the value of I’Sy
when z, is put for z; a similar notation will be used through-

out. It is to be carefully observed that g—g means the com-
plete differential coefficient of P with respect to , that is to
say, in forming dP we are to remember that y and its differen-
tial coefficients all involve « implicitly.
Again
fQSy"dm=[Q T 1= @ _ f"’Q 9

d Sy a'Q
d.'v dw 8‘1/ f
therefore

I G R (Q“” &),

Similarly
[imeyde= (R -G B+ T ),
(@SB S [y
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This process may be continued until all the symbols
8 ', 8y, g‘y ", ... are_brought from under the integnl
Tt is to be observed that all the differential coefficients

2 2
'ZZ_Q , ‘qu , %, g;l,z, % are complete differential coefficients.

U =8y, {P—‘é—g+i—§—...}l— 8, {P‘%+% —}
L[]

\
|
Hence finally ‘
|

+8p,{ —%+ ...}l—Spo{ —%+ }o

+8g1 {R'— "'}1"' 890 {R - "'}o

P Z e TRy Ysyan |

Here we have adopted some obvious simplifications of nota-
tion; thus we use &y, for (8y),, and &p, for (ciS_y) , and
1

dx
so on.

329. The value of U may be denoted thus,
3U=H,—H,+f"Ksydx,

where H, denotes a certain aggregate of terms in which z, is
put for z, and H, a similar a ggregate of terms in which z, is

put for «; these aggregates o not involve any 1ntegra.tlons
Also

dP d*'Q d°R
d‘;+% -7 + ...

K=N-




2

CALCULUS OF VARIATIONS. 297

Since H,— H, involves only the values of the variables at
the llz’mita, we shall sometimes speak of H,— H, as the terms at’
the limits.

330. We can now determine the conditions that must
hold in order that U may have a maximum or minimum
value. For, in order that U may have a maximum or mini-
mum value, 3U must vanish, whatever 8y may be, provided
only that it is an indefinitely small quantity. This requires
that :

K=0 and H - H,=0.

For if K is not always zero, it will be in our power to give
such a value to 8y as will make 8U positive or negative at
our pleasure, and not zero. Suppose, for example, that the
highest differential coefficient of oy which occurs in H — H, is
the n'*, Put dy=a(x—x,)™ (x —x,)™, where a is a function
of  which is indefinitely small, and is at present undeter-
mined. Then this value of 8y makes H, — H, vanish, so that

8U reduces to f leSydz. Now take a such that it is always

positive when K is positive, and negative when K is nega-
tive; then 8U is necessarily positive. And if the sign of a be
changed, 8U is necessanly negative. Thus if K is not
always zero, it is in our power so to take 8y as to make 8U
positive or negative at our pleasure.

Hence for a maximum or minimum value of U we must

have K=0; and then f ZlK 8y dz vanishes, and therefore also
@,
H,— H, must =0, )

331. The student has now become acquainted with the
essential features of the Calculus of Variations; these are

(1) the reduction of 3T to the form H, — H, + j K by ds,
E2

(2) the principle that K must vanish in order that U may be
a maximum or minimum. Although the subject admits of
considerable development, by various extensions of the prob-
lem we have considered, stilfthe two results we have already
obtained are the chief results. :
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332. We now proceed to examine more closely the
nature of the two conditions

K=0 and H,—H,=0.
The equation K'=0 is what is called a differential equa-
tion. Suppose that 23 is the highest differential coefficient
which occurs in V; then this will in general occur in R also,

8,
and therefore in % the differential coefficient Z—:g will

occur, and this will be the highest differential coefficient which
occurs in K, so that the differential equation K =0 will be of
the sixth order. And in general the order of the differential
equation is twice the order of the highest differential coeffici-
ent which occurs in V.

It is shewn in treatises on Differential Equations that the
solution of a differential equation involves as many arbitr:
constants as the number :;Lich expresses the order of the 31?—
ferential equation. We must now shew how the arbitrary
constants which arise from the solution of the equation K= 0
are to be determined, so that a definite result may be ob-
tained. The condition H, — H,=0 serves for this purpose.
Two cases may arise.

(1) Suppose that no conditions are imposed by the prob-
lem on the values of y and its differential coefficients at the
limits of the integration ; then 8y,, &y,, &p,, 3p,,... are all arbi-

uantities, that is, we have it in our power to suppose
any indefinitely small values we please for these quantities;
for example, we may suppose that as many of them as we
please are zero. Since 8y,, 8y,, &p,, &p,,... are thus all arbi-
trary, in order that H —Ho may certainly vanish, the coeffi-
cient of each of the arlbitrary quantities must vanish. This
furnishes for determining the constants as many equations as
there are constants.

(2) Suppose that conditions are imposed by the problem
upon the values of y and its differential coeflicients at the
limits of the integration; then 8y,, 8y,, &p,, dp,,... are not all
arbitrary, for some of them can be expre in terms of the
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rest by means of the given conditions. Let as many as pos-
sible of the quantities dy,, 8y,, &p,, &p,,... be eliminated from
H —H, an& then the coefficients of those which remain must
be equated to zero. The equations thus obtained, together
with those which express the given conditions, will form a
sKstem equal in number to the number of constants, and
therefore will serve to determine those constants.

333. The principal difficulty in examples consists in the
solution of the differential equation K'=0, and this difficulty
is frequently insuperable.

‘We will now shew that when 7 does not explicitly con-
tain the independent variable, one step in the solution of the
differential equation can always be taken. It will be suf-
ficient for practical purposes to confine ourselves to the case in
which ¥ involves no differential coefficient of y higher than
the third.

Since V'is supposed not to involve x explicitly, we have
for the complete differential coefficient of V'

AV dy  odp . dg . o dr

de ' dx
And by supposition
: dP d'Q d'R
0=N—%+E?—z;g ................ (1).
Thus

dV _dPdy ,dp d'Qdy dg d’Rdy dr
T Gd Tl Wit Bt @t
Now .

dPdy, pdp_ d pdy

dx dx dz dz”~ dx’

TQdy_ndg_d (dQdy_ Py

da* dx dxz*)’
&R dy
& dx

P

+RT =102 =S4 R
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Hence, by integration,

_pdy dQdy ,.d% dRdy dRdy ,d%
VPt td P aw Gt et C @
where C is an arbitrary constant. :l‘he highest differential

. . . d . .
coefficient that can occur in (2) is d—:;:g" which occurs in

4R
d‘c! ?
thus (2) is a differential equation of the fifth order, which is
a first integral of the equation (1) which is of the siz¢k order.
Particular cases may be obtained by supposing R or @ or P to
be zero. For example, the most usetul case is that in which V

involves only y and gy ; 8o that (1) becomes

N-_,,

and (2) becomes 7
=p%
V=P 7t C.
334. The differential equation K=0 is also susceptible

of one integration when ¥~ does not contain the dependent
variable. For then N=0, and the equation becomes

dP 4d*Q d°R _
& A T O
and therefore P
dQ 'R _
_—l +W—... = C.

335. We know that f Y de = f V‘%dy, supposing the
%o

limits of the integration with respect to y taken to corre-
spond to those of the integration with respect to . And the
differential coefficients of y with respect to  may be expressed
in terms of the differential coefficients of & with respect to y.

Thus in f ng dy we may regard y as the independent vari-

able, and z as the dependent variable, and proceed to find
the maximum or minimum value of the integral in this new

L
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form. We may feel a priori certain, as the problem is really
not changed by this change of the independent variable, that
we shall obtain the same result as if we had left the original
independent variable.

Hence the cases considered in Arts, 333 and 334 may be
seen to coincide. .
836. Again, let us suppose that ¥ involves only p and
q. Then the differential equation K'=0 reduces to
dP+ aQ

& tar =0
therefore, by integration,

pP=29,q

=7z +0C.

av_,dp  ,dq

Also d-—a:_PE-'-de
. UL XS
0%t @t 0%

therefore, by integration,
V=0¢+C,p+0C,

Here C, and C, are arbitrary constants. In this case the
differential equation K'=0 is of the jfourth order, and the
result we have obtained is a differential equation of the second
order ; so that we have effected two steps in the integration
of the differential equation K=0.

337. We shall now proceed to consider some examples ;
a8 we have already intimated we confine ourselves entirely to
the first part of the process for finding maxima and minima
values; see Art. 325.

838. To find the shortest line between two points.

This example is introduced merely for the purpose of
illustrating the formule, as it is obvious that the result must
be the straight line joining the two points,
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Here V=4 (1+5") and U=/:l~/(1+p')da:.

Thus V involves only p, and the equation K=0 reduces to
dP

— . 1 p
T 0; thus P must be a constant, that is, VI ES] must

be a constant. This shews that » must be a constant, and
therefore the required curve must be a straight line.
: %, p 8, p
—H = 1Py offe _
o this oase B =B = U0+ ) 70+ 20)

If now the two points are fixed 'Y‘oints, we have 8y, =0 and
8y,=0; thus H — H, vanishes. Then the value of » must be
found from the condition that the straight line must pass
through the two fixed points.

Suppose however that the ordinates of the two points are
not fixed ; the abscisse are fixed because x, and =, are taken
to be invariable. In this case 8y, and 8y, are arbitrary ; and
therefore H, — H, will not necessarily vanish unless the coeffi-
cients of 8y, and dy, vanish. This requires that p, and p,
should vanlsﬁl, and as p is a constant by supposition this con-
stant must be zero. @hus our formule are consistent with
the obvious fact, that when two lines are parallel the shortest
distance between them is obtained by drawing a line perpen-
dicular to them both. :

339. To find the curve of quickest descent from one
given point to another.

The following is a fuller statement of the meaning of this
problem. Suppose an indefinitely thin smooth tube connecting
the two points, and a heavy particle to slide down this tube;
we require to know the form of the tube in order that the
time of descent may be a minimum. The problem is known
by the name of the brachistockrone ; it was. first pr by
John Bernoulli in 1696, and gave rise to the Calculus of
Variations.

We shall assume that the required curve lies in the ver-
tical plane which eontains the two given points. Let the axis
of y be measured vertically downwards, and take the axis of
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x to pass through the upper given point. The particle is
supposed to start from rest, and then by the principles of
mechanics the velocity at the depth y is 4/ (2gy). Thus the

time of descent is f &%(i(;—q_%) dz, We may then take
zo

> N (1+p)
V="r—£51,
vy
Here V involves only y and p; sa that, by Art. 333, for

a minimum we must have

V=PFPp+C,
; V+p)_ ’ .
1
therefore m= C.
Hence y (1 +p%) = a constant = 2a suppose ;
therefore = 2—“;—”;

do_(y V__ y
therefore d—y—(%—y) = V=)’

therefore x = a vers™ % ~«/ (2ay — y*) + b, where b is another
constant.

This shews that the required curve is a cycloid with its
base horizontal. its vertex downwards, and a cusp at the
upper point. We may suppose the origin at the upper point
30 that ¢, =0, and then 5 =0.

Here H,—H,= [;,/{y 681?’)}]1_ [«/ ly ﬁp’)}].

1
= m {(178:'/)1_ (Psy)o}'

As we suppose both the extreme points fixed &y, and 8y,
vanish, ang therefore H, — H, vanishes. ! )
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The constant a must be determined by the condition that
the cycloid shall pass through the lower given point.

Suppose however that only the abscissa of the lower point
is given, and not the ordinate. Then, as before, H, vanishes,

and H = («‘;’(‘82'2)1 . Now 8y, is arbitrary, so that in order that
H, may vanish, we must have p, = 0; thus the tangent to the
cycloid at the lower limiting point must be horizontal. This
condition must be used in this case to determine the con-

stant a.

340. We may modify the preceding problem by sup-
posing that the particle does not start from rest, but starts
with an assigned velocity. In this case we will suppose that
the axis of  is not drawn through the upper point, but is so
taken that the velocity at starting is that which would be

ained in falling from the axis of z to the u}}per fixed point.
ﬁ'he golution remains as before; the cusp of the cycloid is
however no longer at the upper fixed point, but in the axis

of x.

841. To find the curve connecting two fixed points such
that the area between the curve, its evolute, and the radii of
curvature at its extremities may be a minimum.

By Art. 159 the expression which is to be made a mini-
mum i8
2
/ = (147 da.
z, q
Here V involves only p and g¢; and therefore, by Art. 336,
for a minimum we must have
V=Qq+ C,p+C,
1 +P’)’= B 1+
g g

that is, g+Cp+C;;

Cp+G)g_,

therefore T +P,),—
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By integration

C, tan™p + 0;” +p.0 =424 0, errenns(1),
o GprOpa_,,
therefore by integration,
C’Itan"p—gll%,a’=4y+constant;
add C, to both sides of this equation, and we have
0tan"p+ﬂo’—p—@=4y+0. .......... @

Eliminate tan™p from (1) and (2); thus
w*ﬁp ) _40y—40z+ 0,0, 0,0,
2\ __ G, y 01
V) =50y = G+ B’
where B is such that 4B= C,C,— C,C,

Let s denote the length of the arc of the curve measured
from a fixed point; then, by integrating the last equation, we
have

s+ C=(Cy— C,m+B).
This shews that the required curve is a cycloid; see Art. 72.

'We must now examine the expression H, — H ; we have

B~ 8, (P-52) +3.0,

therefore

H_S:'/o( ——') +8poQo
As the extreme points are supposed fixed, Sy, and 83/.

vanish ; thus
-Hx apl Qx ’ 'Ho 31’ (] Qo . o
T. I, C. 20
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uS:e]()fose we impose the condition that the tangents to the
ired curve are to have fixed directions at the extreme
points; then 3p, and 3p, vanish, and H,— H, vanishes. In
this case the cycloid must be determined from the conditions
that it is to &ass through two given points, and its tangents
are to have fixed directions at these points.

If, however, no condition is imposed on the values of p at
the limits, we must have @ =0 and @,=0, in order that

2
H,— H, may vanish. Now Q=—(—1%’—’)—; and the radius of

curvature =—(—lig2’)—. Thus the radius of curvature must

vanish at the extreme points, that is, the cycloid must have
cusps at those points.

342. To find the form of a solid of revolution, that the
resistance on moving through a fluid in the direction of its
axis may be a minimum, adopting the usual theory of re-
sistance.

Take the axis of  as the axis of revolution. Then adopt-
ing the theory of resistance which is explained in works on
Hydrodynamics, the expression which is to be & minimum is

f"x yr’
z, 1+p" *

Here V involves only y and p, and therefore by Art. 333,

for & minimum we must have

V=B+C,
: w _, +8 .
thatls, 1+pl y(1+p')g+0)
2 8
therefore G157 +C=0.

This is s differential equation for determining the required
curve,
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Integrals with limits subject to variation,

343. We have now sufficiently explained and illustrated
the method of finding the maximum or minimum value of an
integral expression involving one independent variable, when
the limits of the integration are supposed invariable. We
shall proceed to some extensions of the eroblem; and we
begin by considering the modification which arises from sup-
posing t{e limits of the integration variable. '

Suppose, for example, that we have two given curves in
one vertical plane, and that we wish to find the curve of
quickest descent from one of these curves to the other, the
particle starting with the velocity obtained in falling from a
given horizontal line. Here we have to find the point at
which the particle is to leave the upper curve, and the point
of the lower curve towards which it is to proceed, as well as
the path which it is to describe. We have therefore to effect
more than in the examples hitherto considered, and we shall
now explain how we may proceed.

We know, from what has been already given, that the
curve must be a cycloid with its base horizontal and a cusp
on the given horizontal line. - For suppose any. other curve
drawn from any point in the upper curve to any point in the
lower; this curve cannot be that of minimum time, for we
know that, without changing the extreme points, we can
find a curve of less time of descent than this curve, namely a
cycloid with its base horizontal, and a cusp on the given hori-
zontal line. Since then we know that the required curve
must be such a cycloid, the part of the problem which depends
on the Calculus of Variations may be considered solved; and
we may investigate, by the ordinary rules for maxima and
minima, the position of the particular cycloid for which the
time is a minimum. In fact, taking any arbitrary initial and
final points, we may find the equation to the cycloid passing
through these points; then the time of descent will become
a known function of the co-ordinates of the initial and final
points, and we may determine for what values of these co-or«
dinates the time is & minimum,

20—3
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844, We have shewn in the preceding article that it is
not absolutely necessary to make any modification in our for-
mul® in order to include the case in which the limits of the
integration are supposed to be susceptible of change; for the
process already given, combined with the ordinary rules of
the Differential Calculus, would enable us to solve any ex-
ample. It is however convenient to bring together all that is
wanted for solving such examples, and accordingly we shall
now suleﬂy the requisite modification of our onginal for-
mule, before, let

U= f-, Vi,

Suppose that in addition to the change of y into y+&
the qimits z, and =z, are changed into z,+dz, and z,+dz,
respectively. In consequence of this change of limits U re-
ceives the increment

[V [""Va,

EA EN

that is, neglecting squares and higher powers of d, and dz,,
U receives the increment

Vdz, — Vs,

If we annex this to the expression already given for 8T, we
shall obtain the complete change in U consequent upon the
variation of y, and the change of the limits.

345. If no condition is imposed upon the limiting values
of the co-ordinates, the additional terms just obtained,

Vx dwl - Vodmm

can only be made to vanish necessarily by supposing ¥, =0
and ¥,=0. We thus introduce two new equations in ad-
dition to those which are obtained from H,— H,=0; and at
the same time we have two new quantities to determine,
namely, z, and #,. However, a more common case is that in
which the limiting values have to satisfy given equations.
Such a case we have already indicated in. Art. 343, where a.
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curve is required, the extreme points of which are to lie on
given curves. :

We will consider that limit of the integration for which
the quantities are distinguished by the subscript 1. Let

Y=y+d,
then if there had been no change of the limit, the extreme
values of the variables would have been x, and y, before
variation, and z, and Y, after variation. If however =, is
changed into z, + dz,, we have Y, changed into

dY 1d8'Y
{Y+ 7z %t 5 o (da)'+ ~--J’1a
that is, neglecting squares and higher powers of dz, we have

Y, changed into ¥+ ((fl_f) dz,, that is, neglecting the product
1

&, dx,, into yl+8‘1/;+ (%) dz,. Supposing then that the
given relation which is to be satisfied by the extreme
values is

' Y=4(X),
we must have ¥, =V (x,),

FY
and also

vt b9+ () do = (o o) = ¥ @)+ ¥() di,
to the first order. Thus
b= {¥'0) - 2] d

This gives a relation between 8y, and dz,, so that we can
eliminate one of them from the complete value of 8T.

Similarly, the relation can be found between 3y, and dz,.

In geometrical problems %) is the tangent of the incli-

nation to the axis of  of the line which touches the required
curve at the limiting point; and y'(x,) is the tangent of the
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inclination to the axis of # of the line which touches the
gtven curve at that point.

A particular case may be noticed which is sometimes use-

uppose the complete change of y, is to be zero ; this

gives 8y, + (%)l dx, = 0; similarly if the complete change

of y, is to be zero, 8y, + (%) dx, = 0.
[]

846. Let us now consider the case of the brachistochrone
problem which has been enunciated in Art. 343.

Let the notation be as in Art. 339. Then

= V,dz,— ply 1 _[__»%
o= Vids- Voot [ 7B | - [
! d.
+ L.(N— 22 by d.
As before from the equation N — ‘—2——5=0we deduce ‘
Viy(1+p} = «/(2a),
thus SU— V.de,— V,dx, + 7@ ){(p'o‘y)l (28y).}-

Let us suppose that the natlon to the fixed curve from
which the particle is to start is (X), and that the equa-
tion to the fixed curve at whlch the particle is to arrive is
Y=+ (X ). Then by the precedmg article we have

{"’ (m) "‘P}x 1 %= {X () —P}o
Thus the va.lue of 8T can be put in the form

U= dem 7\.0 3 ‘
jhere Xl = V;"‘ ’5/(2‘1) {‘P (‘”1) pl}
NA+p)
vy, (ﬁa) {¥'(z)-pl

¥ (2a) {14+ p,¥' (@)}
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and similarly
1 ,
A= V@a) {1+ p,X ()}

Since dx, and dw, are arbitrary, 38U will not nécessarily
vanish unless A, =0 and A =0. us

1+p,¥' () =0 and 1+p,x(2,)=0;

and this shews that the cycloid must cut each of the two
fixed curves at right angles.

347. 'We have hitherto tacitly assumed that the function
V does not involve the limiting values of the variables or of
the differential coefficients. Suppose now however that ¥
does involve &,, Z,, Yo, ¥1s Por Pys o0

(1) Suppose that x, and x, are not susceptible of any
change. en y is changed into y + 8y, besides the varia-
tion we have already investigated, ¥ will receive an addi-
tional variation arising from the change in y,, y,, ... Which
occur explicitly in V. These additional terms in o ¥ are

av av av av
;ZES.’/o"'"Z_y; 8.’/1""32’ 8p°+ @:spl"‘"' ’

and consequently the following additional terms occur in
3T,
% (dV av av av
TSt T Bt T et 5 St} d
j% {dy° Y, + a, Y1 + p, o, + dp, op, +

Now &y, s 8p,, Op,, ... are not functions of the variable
x, but onl}: ’osf’l the tims*lli’:‘m values of z; we may therefore
bring these quantities outside the integral sign and write the
additional terms thus,

udV udV Y4
5 h 5 -5 dx LYY}
8.’/0 %o dyo + 8:'/1 £ dyx do + &)o %o dpo +
Now the occurrence of these additional terms will not
affect the reasoning by which it is shewn in Art. 330 that we
must have K=0 in order that U may be a maximum or
minimum, These additional terms must be annexed to the
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expression H, — H, and the whole then made to wvanish
Since the relation between x and # is supposed to be found
from the equation K = 0, the expressions under the integrl
signs in these additional terms become definite functions of z,
8o that the integrations which ate indicated can be effected,
at least theoretically.

(2) Suppose that z, and z, are also changed, and lt
them become x,+ dz, and z,+dx, tespectively. Then 7
receives the additional increment

(] oo [ ]

where V) and [‘Zz]'indicate complete differential coeffici-
dz, dz,

ents; that is to say, we are to remember that z, occurs impli-
citly in g,, p, .., and similarly for z,.

Thus besides the additional terms we have already given
83U receives the increment

=[d a[d
ONEALSIA]
’ %o ‘h’o * %o dzl dx,
and this expression must be annexed to the aggregate formed
of H,— H, and the additional terms already given.

848. TFor an example we will take another modification
of the brachistochrone problem. Suppose two given curves
in the same vertical plane, and let it be required to find the
curve of quickest descent from one of these to the other, the
motion commencing at the first curve.

Let the axis of y be measured vertically downwards;
let y, be the ordinate of the starting point, then when the
ordinate is y the velocity is 4/{2¢ (y — ‘1/5}.

Thus we may take

ny(1+p")
o V-39 2
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‘We have then to change y into i{ ¥, in the solution of
Art. 346, and to add to the expression there given for 8U
the terms found in Article 347,

Here V= -zgiﬂ) ; 8o that y, is the only limiting value

* which occurs in We are therefore to add to the former

value of 8U
| Sy.,f"dvdwdzf [d;:ldz

and [%]‘3; )

Hence by Art. 346, after putting K =0, we have
- dy } “dV
ST = do, — A, dz, + {sy, (dx) daf [ e
where A, and A, have the values assigned in Art. 346.
Now in the present case

av__dv_ _n__4P
dy— dy T dx?

()
therefore f.lg;—jdm PoP= 1’0(251;

and 8y, + (d—z) do, = () de, as in Art. 346.

X (@)
Thus 30 =2, di, — Ndz, + o n (.~ p) 42,

= m {1 +2.¥ \(zl)} da
1 ,
= 7aay Lt 2x (=)} doe
Then by equatmg to zero the coefficients of d'v and du,

we have
1+p¥'(®) 0 and 1 +p.7( () = 0,
gothat (@) =) -
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Thus the cycloid cuts the lower fixed curve at right
angles, and the tan, %ent to the upper fixed curve at the
e

initial point is parallel to the tangent to the lower fixed curve
at the ggal point,
Integrals with two dependent variables.

349. We have hitherto su Fposed that V is a function
with only one dependent variable; let us now suppose that V
is a function of two dependent variables.

Let V be a function of 2, y, 2, and the differential co-
efficients of y and # with respect to «; let,

U= j Vs,

and let us investigate the vana.tlon in the value of U when y
and z receive variations.

By proceeding as in Art. 328 we shall obtain the follow-
ing result,

sv=1ar,-1z,+.f,—.f.+f K8y + Lbs) d,
Zy

where the symbols have the following mea.nings,

3y, as before, denotes an arbitrary variation given to y, that is,
dy is an indefinitely small arbitrary function of z;

K, as before, denotes
L __d_ d_l + il: d_l —
dy dzdy  dody’ "7

where ZV, g;, dV; yeee AT partla.l differential coefficients,
and 2 d dV a: d lote differential coeffici
dwd”dz’dy’" . are complete differential coeflicients

relative to z;

3z is an arbitrary variation given to £, that is, 82 is an in-

definitely small arbitrary function of x;

L is relatively to z the same as K relatively to g, that i 13,
=27 _ d dv V a* dv

G dwdd TdR A
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H,— H, has the meaning already given, and J,—J, is rela-
tively to 2 the same as H, — H relatively to y.

350. We now proceed to find a maximum or minimum
value of U on the suppositions of the preceding article.

(1) If y and 2 are independent, in order that U may

certainly vanish we must have
K=0 and L=0;
and also H—-H+J,—J,=0.

The values of y and 2 in terms of z must be found by
solving the differential equations K =0, L =0; and the
arbitrary constants which occur in these solutions must be
determined by equating to zero the coefficients of the arbitrary
quaatities 8, by, (3 AT (s %) v+ which ocour
in B~ H+J,~J, '

(R Suppose however that y and 2 are not independent,
but that they are connected by the relation ¢ (z,y,2)=0,

which is always to hold. Since this relation is supposed to
hold always, we have also

¢ (@, y+8y,2+82)=0;
and therefore ultimately

by b _
73-’83/+d—282—0.

Thus the integral f "(K 8y + L 82) dz becomes
*o

€ Lﬁ
E--% 8y da,
d¢ H

dz

and in order that this may vanish we have the single con-
dition

K L.
T~ %

dy ds
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and from this differential equation combined with ¢ (, y, ) =0,
we must find y and .

As before, we must also have
Hy~ Hy4+ J,=J,=0.

851. For an example we take the following problem ; to
determine a line of minimum length on a given curved surface,
between two given points. ~

Here we have

U=L.,\/{l+ &)+ )}da:=f V(i+y ") da;

- __z_ -t .
thes K- o iy LT & yary
let ¢ (2, y, £) =0 be the equation to the surface on which the

line lies. Then by the preceding article we have, as the con-
dition for a minimum,

d. Yy d 2
& (a7 & (O]
d
% | ¢
Let s represent the length of the arc of the curve; then
___.!L'___ = ‘l-’l. and __E'_____ = d_z
NO+y 42" ds’ " N(l+y+2") ds’
Thus the above equation may be written
2y &
ds' _ ds’

From this we ma conJectm'e by symmetry that each of
these fractions is equal t

d'z
ds'
% ’
dx
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and this we can prove; for from (1) each of the fractions by
a known theorem of algebra is equal to

dyd'y de d'z

ds & Vs ds

dydg” "dz a3’

ds dy Vs @

and since the equation ¢ (2, 7,2) =0 holds for every point of -
the curve, we have .

dpdz dbpdy dbds_.
dxds T dydstdzds O
also by a known theorem

ded'z dydy dzd's_
Gd T st Har "

Hence a line of minimum length is determined by the
symmetrical equations

d'z dy d'z
ds d8f ds
.%‘:w=(—i";."-ucooooo-unu'..--(2).
T Ay &

It is proved in works on Geometry of Three Dimensions
that the equations (2) shew that the osculating plane at any
point of the curve contains the normal to the surface at that
point, ’ :

Relative Maxima and Minima.

852. A class of problems still remains to be considered,
called problems of relative maxima and minima values. Su
pose we require that a certain integral U shall have a maxi-
mum or minimum value while another integral W, involving
the same variables, has a constant value; for example,
we may require & curve which shall include & minimum area-
under a given perimeter. Here we do not require that 8U
shall always vanish, but only that it shall vanish for such re-,
lations among the variables ag give a definite constant value
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to W; that is in fact, we require that 8U shall wanish ks

all such relations among the variables as make § W vanis. |

The problem is solved by finding a maximum or minim:
value of U+ aW, where a denotes a constant; for in tt:
golution we ensure that 38U+ ad W necessarily vanishes,
therefore 8 U must vanish whenever 8 W does. The consta
a occurs in the solution, and its value must be determined br
making the integral W have the constant value which

supposed given.

If we require that W shall be a maximum or minimm
while U remains constant, we shall in the same way proceed

to find the maximum or minimum of W+ bU, where 4 iss

constant; and if we sauppose b = 5, we obtain the expression
% (U+aW). Thus the same solution will be obtained for this

problem as for that in which U is to be a maximum or mini-
mum while W is constant.

‘We now proceed to some examples,

853. It is required to find a curve of given length joining
two fixed points, so that the area bounded by the curve, the
axis of z, and ordinates at the fixed points may be & maximum.

Here U=f:ydz, W=[:V(1+p')dm;

let V=y+a+/(14p"), then we have to investigate a maxi-

L J

mum or minimum value of / 'Vdz. Under the integral sign
&

we have only y and p; hence for & maximum or minimum,

by Art. 333, we must have
V=Fp+0,

that is, y+a4/(1+p*)=v_(1“%’)+ou

that is, =0,

a
()
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=%
Thus 1+p —(0‘_!/)::
da\'_1_ (C-y9)" .
therefore (d__,,) -7 _F;w ’
therefore z+ C,=+{a'-(C,—9)%}.

This shews that the required curve is a circular arc.

Since the extreme points are supposed fixed, the part of
8V which depends on the limits vamsies.

The constants C,, C,, a must be determined by making
the circular arc pass through the given fixed points and have
the given length between them.

354. Given the len%'t.h of a curve, find its form so that
the depth of the centre of gravity may be a maximum.

Take the axis of & horizontal, and the axis of y vertically
downwards. Let b denote the length of the curve; then the

depth of the centre of gravity is lb f 'ly ¥(1+p") dz, and the
%o
length is /gxd(l + p") da.
%o

Let V=%.'/ V(1 +7) +av(1+79,

then we require a maximum or minimum value of * V.
%o
Here by Art. 333 we must have
V=_PFp+ C,, that is,

y wn___ Py ap’
ZV<1+P‘)+“V(1+?)—bV(1+p')+~/(l-l-p')+C"

y+ab ...
therefore m bC;;
(y + ab)*

therefore d+p'= FOr
1
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de bC, .
and therefore 'dy = ’0/{(.’/'*' aI))'— bna:} H

hence a=A4log[y+B++{(y+B)'-A4%]+C,,
where C, is a new constant, and 4=5C, and B=ab.

This equation shews that the required curve is a catenary.
If the ends of the required curve ﬁ supposed fixed, the terms
depending ‘on the limits vanish, and the constants 4, B, C,
must be getermined by making the catenary pass through the
fixed points and have a given length between them, Suppose
however that instead of being fixed the ends are only con-
strained to lie on fixed curves. By proceeding as in Art. 346
we obtain the following limiting terms ;

I’ldwl - Vodzo'*' Pls.'/x - -Pos.'/o'
Consider the terms with the suffix 1; we have V,dx,+ P, 8y,,

that is, (%l + a) V(1+p) do, + (%! + a) %}74.

Now supposing y =+ () the equation to the fixed curve,
we have 8y, = {¥' (z,) — p,} d,, 8o that the term reduces to

y,+ab .
M ETR) {1 +p¥' ()} de,.

To make this vanish we must have 1 + p,¥'(2,) = 0, for
y,+ ab cannot vanish, as then #, would be impossible.
similar result holds at the other limit; and thus it appears
that the catenary must cut the fixed curves at right angles.

. 855. Given the surface of a solid of revolution, to find its
nature that the solid content may be a maximum.

Take the axis of = as the axis of revolution. Then the

surface is 2 f "y (1 +p% dz, and the volume is [ '3 da.
2o : &o

Let V=4"+ay s/(1+p") ; then we have to find a maxi-

&

mum or minimum value of f 'Vdx. Here by Art. 333 we
&o

must have . .
V=P p+ C, .
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that is, ¥Y+ayy(1+p)= I/’(% *0

a
VA +7

This is a differential equation to the curve which would by
revolution generate the required surface. Supposing that the

ends of the generating curve are required to pass through
fixed points, the terms at the limits vanish.

If either of the fixed Eoints is on the axis of revolution, the
value y = 0 is to satisfy the equation to the curve; thus C'=0.
Then the general equation reduces to

therefore v+ =C.

@y __ - % o0
y’+m—0, therefore y+~/(1+1’,)—0,
this gives a circular arc as the generating curve.

Some further discussion of this problem will be found in
the Philosophical Magazine for July and for August 1861.

856. Given the mass of a solid of revolution of uniform
density, required its form so that its attraction upon a point in
its ax1s may be a maximum.

Let the axis of = be taken as that of revolution, and the
position of the attracted point as the origin. ‘

Let the solid be divided into indefinitely thin slices by’
planes perpendicular to the axis of x. If y represent the
radius of a slice, « its distance from the attracted point, « its
thickness and p its density, the attraction is (see Statics, .
- Chapter xI11.)

o3
27rp/c {1 — 4/(27'—"‘3’)} .
Therefore the whole attraction of the solid is

x, @
e [ - o)
and the mass of the solid is

T. I C. 21



322 CALCULUS OF VARIATIONS.

z . .
Thus let V=1~ ——5—5 +ay"; th have t ti-
us le J(z'+y’)+ay en:ve ave to inves I
gate the maximum or minimum value of 'V da. '
&o

The condition N—%——i+ e...=0 reduces here to N =0,

: zy
that is, 2ay + =0;
YTy
therefore . 2a (2" + y) +z=0.

If we suppose the limits «, and z, susceptible of change
we have the Yimiting terms V dx, — V dz,; and to make these
vanish we must have ¥, =0 and I};= 0; this leadsto ,= 0 and |
4¥,=0. Thus the solid must be formed by the revolution
round the axis of # of the whole closed curve determined by

the equation 2a (2*+ 3"+ 2=0; the value of @ must be
found from the condition that the mass, and therefore the
volume, is given.

Double Integrals.

357. We shall now consider the problem of finding the
maximum or minimum value of a double integral; and we be-
gin by finding the variation of a double integral.

Let z be a function of the independent variables z and y at

2, &
&

a.nd% ; let U= f "V de dy; the integration is supposed
Zo v Yo
effected with respect to y first, and the limits y, and g, are

supposed given functions of x. It is required to determine
what function z must be of z and y in order that U may
have a maximum or minimum value.

Let 8z denote an indefinitely small arbitrary function of z
and y; let 8V denote the variation made in ¥ when z receives
the variation 8z, and let U denote the variation in U; then
we have first to obtain an expression for 8U.

present unknown; let ¥ be a given function of z, y,



CALCULUS OF VARIATIONS. 323

Let L denote the partial differential coefficient of V with
respect to 2, M the partial differential coefficient of ¥ with

respect to Zz_w’ and N the partial differential coefficient of ¥

with respect to d—?i; then we have

dy
ddz ddz

where, as heretofore, we confine ourselves to the first power
of the indefinitely small quantities. Hence

o [ ddz ddz
8U=f% /y., (Lsz + M NTy) dzdy.
The value of 87 may be written thus;

dM dN d d
5V = ( - _@—) 8o+ 7 (M82) + 7 (NBs),

and therefore
LW E ) aM dN?
SU— .ro./yo (L —E —-‘Ty') SZszy

o[ o 1] oo

The differential coefficients with respect to & and y which
are here indicated are complete differential coefficients.

Also [* " & (Nee) dmdy = [ ((8e), — (Vo)

o [ [ 2 (V) ddy = [ ((VB:), — (M)} e
where (N8z), denotes the value of N8z when y, is fut for y,
and (Vdz), denotes the value of N3z when y, is put for y.

And by Art. 216, .
nd d [y d; d;
oI (M) dy = %‘ MSz dy — (M3z), d—i‘+(M8z)°%’,
where (M3z), denotes the value of M8z when g, is put for y,

and (Mdz), denotes the value of M8z when y, is put for y.
21—2
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& [ 9 d
Theref J 2 (Mb2) ded
ore f o (M3z) dzdy

=(:M8zdy) - ’:M'o‘zdy)

r=2) F=Xg

£ d - d:
- L. (M), % s 4 L.. (M32), 2o .

&
Therefore 8U= :L’ (L—‘—%[ -%) 82 dwdy

+[ : {(st), - (N&).,} dz

+( :M«Szdy) (/" M&dy)mo

=2, Yo
L7 ‘i’l & dy
- L, (M52), %4 g + L.. (M82), e .

If the limits y, and y, are constants, the last two terms
vanish,

358. 1In the value of 8U found in the preceding article,
there is one term which is a double integral involving &z
under the integral signs, and various single integrals de-
pending upon ge limiting values of 8z. By the method
already used in Art. 330, it will follow that 8U will not
certainly vanish unless the coefficient of 8z under the double
integral sign vanishes; thus for a maximum or minimum
value of U we have as a necessary condition

This is a partial differential equation for finding 2 in
terms of # and y; and we may say that the arbitrary func-
tions which occur in its solution must be determined so
that the remaining terms in §U may vanish. But the diffi-
culty of integrating the partial differential equation in general
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Erevents any practical examination of these terms at the
imits. :

359. As an example, let it be required to determine a
surface of minimum area bounded by a given curve.’

Here by Art. 170,

& [ dz\! dz\*
Lo/ @) + (@)}
let us put as usual
dz2 _ de _  d's_ d'z _ ﬁ—t
&P ZTY @T" Wdy " @

The condition for a minimum reduces to

N _
=t~
. d P d q _
that is, to dz4(1+p’+q')+dyV(l+p’+q’)_o’
that is, to

r(1+p'+¢)—(pr+g) p+t(1+7°+¢) — (ps+gt) g=0,
that is, to  (1+¢")r—2pgs+ (1+p°)¢=0.

It is proved in works on Geometry of Three Dimensions
that this equation indicates that the required surface is such
that at every point the two principal radii of curvature are
equal in magnitude and of contrary signs.

Since we suppose the boundary of the required surface
. to be a fixed curve 8z vanishes all round this boundary; thus
the terms relative to the limits in 8 U all vanish.

Discrimination of Maxima and Minima values.

360. We shall now make some remarks on the second
art of the investigation of maxima and minima values of
1ntegrals; see Art. 325. ‘ : ‘ :
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Consider the example of finding the shortest line between
two given points. Here

V=vl+5), U=f"m.
%o
Suppose y changed into y+ 3y, and consequently p into

+8p; put p+38p instead of p m ¥ and expand; thus V
mes

_pd ep)* _
N/(l +P’) + N/(l +P’) '-*'2 (l +p,)‘ .

where the terms which are not expressed are of the third and
higher orders in 8p. Thus we obtain

L L S N L )
=, A +al g

The first of these terms is what we formerly denoted by
8U, and the investigation of the minimum value of Uso far
as it has hitherto been carried, consists in making this term
vanish. Supposing then that this term vanishes, and neg-
lecting terms of the third and higher orders, we have

v=1["_C g4
2)a (1+pht
If @ — x, is positive, every element of this integral is

positive ; thus 8U is positive, and therefore a minimum value
of U has been obtained.

vy

361. Again, take the case of the brachistochrone, when
the extreme points are fixed. Here

U= ["NA+P) 5

_NA+p")
V 4/.1/ %o '\/.1/

H

Change y into y + 8y, and p into p + 8p; and expand
the new va.luye of V.yThgs Vbeg)mes P+ P
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Va+p) JA+p)8  plp

vy 2y gt (140}
L3+ oyl (@)
8yt 25 (1 4+ 2yt (147}

and from this we can obtain 8U.

Now by the process of Art. 339 the terms of the first
order in U are made to vanish; then, neglecting terms of
the third and higher orders, we have

SU— z;{s (1+p'): (8y)" _ {83/81»’“_ §(8p)’ : }dz
= 8y 297 (1+p)? 2% (14"}
We have now to investigate the sign of this expression
when the relation between z and y is that which is determined

in Art. 339; and we shall shew by some transformations
that 8 U is positive.

Since gt (L+p)t=(2a)h,
. %, 4 s s
we have 8U= {3 (2“3 3(83/) _pdp + ¥ (3p) } d
%o Y 2y (2a)*  4a (2a)}

“saatla Uy

Yo [P 2L (s (0)a

and as the extreme points are supposed fixed Oy vanishes at
the limits ; therefore

[y =g [ g (5) o

d 2)_1 dp _p'__a_p__3a-—y
Now dw(y YT T TR T T T

Therefore f" de — lf‘x (3)" 3a—y dz;
%o y 2 N y.
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1 [= () y(p)
and w‘s(sa)i ,,{23,' +L2‘T .

Thus 8T is positive, and therefore a minimum value of U
has been obtained.

362. The preceding article shews that it may be possible
to change the expression of the second order to which 8Us
reduced by our previous investigations, from a form in which
the sign 1s uncertain to a form in which the sign is obvious.
A general theory with réspect to suitable transformations of
tmcie terms of Xe second order has been given by Jacobi;
fl,; this we refer to the works named at the end of t.Ke Ppresent

pter.

It may be observed that many of the problems discussed
in the Calculus of Variations are of a kind in which we may
infer with more or less certainty, from the nature of the par-
* ticular problem, that there can be a minimum and no maxi-
mum, or a maximum and no minimum,

363. In the problem discussed in Art. 359 it is easy to
shew that the result really gives a minimum. Here

V=v(t+p+g) U=["["V+ +q) dody.

Suppose 2z changed into z + 2, in consequence of which p
becomes p + &p and ¢ becomes g+ 8. Thus V becomes

pop + 9%

1+ +gt (140 + g

+ (1+4¢") Bp)' __ pgdpdq + + 7") (39)*
21+p'+ N (L4 + O 2(1+p'+

.(l+p’+4q’)’+(

ooooooooooooooooooooooooooo

Then supposing the terms of the first order made to
van}lsh, and neglecting terms of the third and higher orders,
we have
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8U=}2- :’f" (144" (3p)* — 2pg p8q + (1 + p°) (89)’&4'/

¥ (1+p'+ M
_1[=[% @)+ (39)" + (¢%p —p39)
2/, Lo (1+p"+ ) decdy.

Thus the term under the integral signs is necessarily
positive ; so that a minimum value of U has been obtained.

Condition of Integrability.

364. In Art. 330 we have found that K=0 is a neces-
sary condition for the existence of a maximum or minimum
value of the integral there considered. It may however
happen that in certain cases the relation K'=0 1is satisfied
sdentically ; this case we proceed to exemplify and interpret.

Suppose we are seeking a maximum or minimum value of

2, Y
’ ” "
Here y=¥_ % %
y ¥y’
_AdV_ y  2xy" xy"
N=g=yt Y Ty
_4V_1_2zy
dy' y y! ’
dV =
Q"dyn—‘y’
‘E de y: 2:2_1/" a:y"
N-Gt@T@ =gty
yl 21/[ 2my" 4@”}
—_d—-5 -5 - +
{y' y Y
_Y _ay 2=y
yl yl yl
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On collecting the terms it will be found that
dP  d'Q
N-%t
vanishes. Thus the relation K=0 is an tdentity in this
example, and we cannot obtain from it any value of y.

In this example we shall find that
[z~ %
¥y

that is, the integral f Vdz can be obtained without assigning
the value of y in terms of . Thus if we wish to find a

. . . o . .
maximum or minimum value of f Vdz, we must investigate
%o
’

’
- a maximum or minimum value of (Ey—) - (%‘;l—) . We are
J, 1 o,
therefore not concerned with the maximum or minimum of

an undetermined integral expression of the kind hitherto con-
sidered, but with the maximum or minimum of an expression
free from the integral sign.

This species of maximum and minimum problem is con-
sidered in some of the comprehensive treatises on the Calculus
of Variations; as it does not present much interest we will
refer the student to such works.

365. We shall now prove universally that the necessary
and sufficient condition in order that V may be integrable
without assigning the specific value of y in terms of «, is that
K =0 should be identically true. An expression which is
integrable without assigning the specific value of the depend-
ent variable in terms of the independent variable is sometimes
gaid to be integrable per se, and is sometimes said to be tm-
mediately integrable.

366. We first prove that the condition is necessary.
Suppose that ¥V involves @, y and the differential coefficients
of y with respect to z up to J

inclusive,
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If the function ¥V is immediately integrable the integral
" Ve can be expressed in the form

ol (8); (), (1)
b (), (), ()

where the form of the function denoted by ¢ remains un-
changed whatever may be the value of y in terms of . Now
suppose that y receives such a variation as leaves the values
of y and its differential coefficients at the limits unaltered;

then from the value of o Vdzx it follows that

®o

*
8| Vdxe=0;

Zo

thus by Art. 329

i, @V d dV  d* dV
f Sy{@——%-@'i‘@ 23—/—,,—...}%\-—0.
But this cannot be true whatever 8y may be, unless

av_dav & v _
dy dzdy  do' dy’
and unless this is identically true it determines y as a function

of 2. Thus if ¥ is immediately integrable the relation K= 0
must be identically true.

Next we shall shew conversely that if this condition
holds ¥ ¢s immediately integrable. "It is usually considered
sufficient to say, that if this condition holds the variation of

" Ve depends solely on the limiting values of «, y, and
%o

*o

=0,

the differential coefficients of y; and therefore f " Vde must

L/
itself depend solely on these limiting values, that is, V must
be immediately integrable. We shall however reproduce a
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more satisfactory demonstration which has been given of the
proposition.

Suppose V=¢94,9" )

Let » and v denote two functions of z at present undeter-
mined ; let a denote a quantity which we shaYl vary indepen-
dently of z. Let (; denote what ¥V becomes when we

ut » + av msbea.d 0 3/, and '+ av’ instead of ¥, and u" + av”
1nstead of ", and so on; thus

Vv(a)=¢ (z, utav, u'+av, v’ +a",...).

Differentiate both sides with respect to a, so that we have
a result which we may denote thus,

V' (a) = % v+3¢,v +j¢,’, A
Integrate both sides, from a =0 to a=1; thus
V(1) =4 (0) = f {——v+d -5 +j¢,’,v"+ }da,
that is, we have the following identically true,-
Pz, utv, v+, v’ +9",...)

= ¢ (m, U, "‘fl, w'y )
+ f v+ v + @ v+ .. }da
d ’ d ll of
Integrate both sides with respect to ; thus

f¢ (@, ut+o, '+, v +0",..)de

_—.ftﬁ (=, u, ¥, ", ...)dz

st ]
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where in the last term the order of the independent integrations
has been changed..

By integration by parts
a ., _ db d d¢
du’vdx_vd’—fdzd dzx,
B oy d b (P
fd""d”” =V d fdw*d"‘h
and so on.
Thus

_[¢(ac, u+v, u’}v’, u"+v",:..)da:
=f¢ (@, u, u, u",...)dx
+f:"(%‘d% ‘%+ ...)da

+f:'v’ (% - ) do

ooooooooooooooooooooooooooo

Sl g e o]

Now by supposition the relation K'=0 is satisfied identi-
cally whatever may be the value of y; 8o it is satisfied if
u +av be put for y. Hence _

d_ddp, Pdb_
du dx dd | dx* du’ R

The functions » and v are at present in our power; put
y =u for v and we have
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[p@ 59,y

=f¢ (@) u, W, u",...)de

(@ -L )

+(y'—u')f:(jT",’, ~..)da

Thus f Vdzx is here actually exhibited as an expression

consisting of terms, one involving only ordinary integration
with respect to @, and the others ordinary integration with
respect to a. The function w is still in our power; it should
be chosen so that none of the quantities which occur become
infinite or indeterminate; it may happen that consistently
with this limitation we may put » =0.

367. It will now be easy to give the necessary and sufficient
conditions for ensuring that a function shall be integrable
per se more than once.

Let V have the same meaning as before.

‘We have, whatever V" may be,

f{[de}dx=wdex—fodm;

In order then that ¥ may be integrable per se twice, the
condition must of course be satisfied which ensures that it is
integrable per se once; and then the only additional condition
is that 7 must also be integrable per se once. Thus in order
that V" may be integrable per se twice, the necessary and
sufficient conditions are that the following relations must be
identically true,

dv. d dV  d* dv

@-—%d—y-}-ww— -.=0 ......... 0-.(1),
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dVa_d dVa, &' dVs_
dy dx dy " do dy"
‘We may modify the form of (2). For

aVz_ 4V dVe_ dV dVz_ 4V .
dy = dy ’ dyl = dyr ’ dy" = dy” g sscces H

ddVe_, ddv dv

dm dy' - dx dyl dy,’

£ Ve & AV 4V

dxs dy" = d.’t’ d_yll dxdy"’

& e_ & AV > AT

dxa dy"’ "“xdxa dynl da/’dy"' )

Substitute in (2) and omit the terms which are zero by (1);
then we obtain

dV_,d v & v
dyl d$ dy" dz’ dy'"
Thus (1) and (2) may be replaced by (1) and (3).

By a formula given in Art. 54 the »** integral of any pro-
%osed expression is exhibited in terms of # + 1 single integrals.
rom this formula we infer that in order that 7 may be
integrable per se n times, it is necessary and sufficient that
each of the following expressions should be integrable per se
once,

V, @V, &V,.....a"V.

For example, in order that ¥ may be integrable per se
three times, besides the conditions (1) and (2) or (1) and (3),
the following must be identically true,

dva* d de’+_¢Z_’ ava'
dy dz dy " do* dy”

We may modify the form of (4). For
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ddve_ ,ddv . av
&l Ty

4 dvs ar dv d dv  _dV
R T R A T
a’ ave’ a dv @ av d dv

priv il = Fribed = B AAr il

Substitute in (4) and omit the terms which are zero by (1)
and (3); then we obtain

vV _3.3d dV 4.3 8 dV _
& lidkdy Tadd T

Thus (5) may be taken instead of (4), in conjunction with
(1) and (2) or (1) and (3).

Addition on the Variability of Limats.

368. In the method we have adopted of treating problems
involving changes of the limits we have followed the example
iven in two most elaborate works on the subject, those of
trauch and Jellett; and we decidedly recommend this
method as the best. We do not ascribe any variation to the
independent variable, but only to the dependent variable.
Another method however has been frequently adopted, and it
should be explained in order that the student may understand
any reference to it which may occur in his reading.

In this method a variation is ascribed both to the de-
pendent and independent variables.

Let = become « + 8z and let y become y + 8y, it is required
t)
to find the variations of% , g?.’/ y sene
dy

o O
‘We denote the variation in sz by & Pt thus
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dy , By
&zt de dy
T dx dx

neglecting small quantities of the second order.
Thus adopting the usual notation for a differential co-

efficient, we have

d@®y—ydx)
=2 ' iy 827,
0r 8' ’ yll 8

In this result change y into y'; thus
" " d 8 = st
&y —y" 5z = (Sy da;y )

_ d*(8y — y' 8z)
— g

d(dy —y')
.

8 — ’
Similarly 8" -y bo =T B =4,

and so on.
Put o for 8y —y'8x; thus
=22 syt
b= 1y e,
sy =00ty

.....................

22
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Now let ¥ be any fanction of z, y, and the differential
coefficients of y with respect to z; and let U= f "y dz,

Let it be required to express the variation of U which’arises
from the variations 8z and 8y in « and y respectively. Let
8V denote the change made in V; then

s0=["(7+87) L t2) gy RCE

n _ddx L1
= 2 V%—dx+ ‘%Sde,

neglecting a term of the second order.
ddz av
Now fVTJ;Ja;=V8m—f[%]8a:dx,

- s, ddx a[dV .
therefore o V—d:? de = (V&) — (V &), — Lo [?Z] Sz du,

where d—dl:—:- denotes the complete differential coefficient of
V with respect to .
Thus 307= (Va), - (Ve + "{sv- [%;V] Sz} dz.
&o
av, . dv ave,, AV,
TJ;: 8.’D+7?8‘1/+'@8y +"7y',,8y + ...,

[d av  dv av ., dv _,,
Y+

And 8V=

=)~ ds Y T ay Y T ay
thus ’
: i v av., av .,
8V—[;£:|8:::=@w+@m + g o
and finally

*

SU=(Vda),—(Vox),+ f% Ot T

‘We need not proceed further as we have arrived at a result
equivalent to that in Art. 344; we have here o instead of the

(JV de’+gyl,/jw"+ )dx
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8y which occurs there, and 8z, and &z, for dz, and dx,
respectively.

In geometrical applications it will be observed that « and
y become by variation @ + 8 and y + Jy respectively. Thus
z, + 8z, will correspond to the z, +dx, of Art. 345, and

3.+ 8y, will correspond to the (¥ + 7 i) of Art. 345,
1

369. For further information on the Calculus of Varia-
tions the student may consult Professor Jellett’s treatise, and
the History of the Progress of the Calculus of Variations during
the Nineteenth Century, by the present writer.

The most interesting examples in this subject are those
which are connected with physical science, as the problem
of the brachistochrone; accorgingly we shall include some
more applications of this kind in the following selection for
exercise.

EXAMPLES.

1. A curve of given length has its extremities on two
given intersecting straight lines; determine its form
when the area included between the curve and its
chord is a maximum.

2. Determine a plane closed curve of given perimeter which
shall include a maximum area.

(See History..., page 68.)

3. Required to connect two fixed points by a curve of
given length so that the area bounded by the curve,
the ordinates of the fixed points, and the axis of
absciss® shall be a maximum, supposing the given
length greater than is consistent with the solution in

Art, 353,
(See History..., page 427.)

4. A rectangular dish is to be fitted with a tin cover of
iven height having the ends vertical ; determine the
orm 80 that the amount of material used may be the

least possible,
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5. A mountain is in the shape of a portion of a sphere,
and the velocity of a man walking upon it varies
as the height above the horizontal great circle of the
complete sphere; shew that if he wishes to pass from
one point to another in the shortest possible time, he
must walk in the vertical plane which contains the two
points.

6. When a curved surface can be divided by a plane into
two symmetrical portions the intersection of the plane
and surface, when an intersection exists, is in general
a line of minimum length on the surface.

(See History..., page 365.)
7. Find the minimum value of

dy\* . (y+z—sinz)’
f{(d_x) sinx + e dz.
(See Philosophical Magazine for December, 1861.)

1 2
8. Required the minimum value of f (%) dz under the
[
1
following conditions; y,=1, f ,;1/! de=—1.
0 J1

(See History..., page 432.)
9. Required the variation of f Vdx, where V is a fanction

2,
of:c,y,z—z, %, ... and v, where v=fV'da:,andV’is

i &y dy
also a function of z, ¥, To? Tdr
(See History..., page 21.)
10. Let s denote [ V(1 + ") de, and let ¢ (s) be any function
(]
of 8; then the relation between = and y is required

which makes f “¢(s)dx a maximum or a minimum
o

while / ‘:\/ (14 p") dx has a given value, a being a con-

stant. For a particular case suppose ¢ (s) = a.
(See History..., page 453.)
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11. Required the curve at every point of which
d; d
fr+m-o P ly+0-a

is a maximum or a minimum.
(See History..., page 1.)
12. Required the curve at every point of which yg—z is a

. .. . d
maximum or & minimum, the variations of y and %

dx
being so taken that at any point yx—y’%shall

undergo no change by variation.
(See History..., page 414.)

13. Apply Art. 350 to prove the point assumed in Art. 339,
namely, that the required curve in the brachistochrone
problem lies in the vertical plane which contains the
two given points.

14. The form of a homogeneous solid of revolution of
given superficial area, and described upon an axis of
given length, is such that its moment of inertia about
the axis is & maximum; prove that the normal at any
point of the generating curve is three times as long as
the radius of curvature.

15. A given volume of a given substance is to be formed
into a solid of revolution, such that the time of a
small oscillation about a horizontal axis perpendi-
cular to the axis of figure may be a minimum; de-
termine the form of the solid.

(See History..., page 391.)

16. A vessel of given capacity in the form of a surface of
revolution with two circular ends, is just filled with
inelastic fluid which revolves about the axis of the
vessel, and is supposed to be free from the action of
gravity. Investigate the form of the vessel that the
whole pressure which the fluid exerts upon it may be
the least possible, the magnitudes of the circular ends
being given.

Result. The generating curve is a catenary.
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17. Find the equation given by the Calculus of Variations
for the transverse section of a straight and uniform
canal, when one of the three quantities, the surface, the
capacity, and the normal hyt?.mstatic pressure, is either
a maximum or a minimum, and the other two are
given, the terminal surfaces and pressures not being
taken into account.

Shew also that when the surface is & minimum and the
ca};;acity only is given, the section is circular; and
when the normal pressure is a minimum the section
is a catenary or two straight lines, according as the
surface or the capacity is given.

18. If there are two curves with their concavities down-
wards and terminated in the same extremities, a par-
ticle moving under the action of gravity will take a
longer time to describe the upper curve than the lower
curve, the initial velocity being supposed the same in
the two cases.

(See History..., page 348.)
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student is not presumed to require & knowledge of any branches of
Mathematics beyond the elements of Algebra, Geometry and Trigo-
nometry. A collection of Problems and Examples has been added,
chiefly taken from the Senate-House and College ination Papers—
which will, it is trusted, be found useful as an exercise for the student.
In the Second Edition several additional propositions have been incorpo-
rated in the work for the p; of rendering it more mmm
Collection of Examples and Problems has been largely i

11. Elementary Hydrostatics.

WITH NUMEROUS EXAMPLES AND SOLUTIONS..

By J. B. PHEAR, M. A.
. Fellow and late Mathematical Lecturer of Clare College.

Second Edition. 156 pp. (1857). Crown 8vo. cloth. gs. 6d.

“An excellent Introductory Book. The definitions are veri clear;
the descriptions and explanations are sufficiently full and intelligible ; the
investigations are simple and scientific. The examples greatly enhance
its value.”—ENe118H JoURNAL oF EpUCATION. °

This Edition contains 147 Examples, and solutions to all these ex-

amples are given at the end of the book.
Macmillan and Co.
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12. Analytical Statics.

WITH NUMEROUS EXAMPLES.
By 1. TODHUNTER, M.A.

Seeond Edition. 330 pp. (1858). Crown 8vo. cloth. 10s. 6d.

In this work will be found all the itions which usually appear
in treatises on Theoretical Statics. To the different chapters ples

are a] pen%g been selected principally from the University
and College ination Papers; these will ish ample exercise in
the application of the principles of the subject.

13. Dynamics. A Treatise.

By W. P. WILSON, M.A.
Professor of Mathematics in the University of Melbourne.
176 pp. (1850). 8vo. gs. 6d.
This Treatise contains the fundamental principles of the science, with

their application to the motion of particles and to the simpler cases of the
motion of bodies of finite magnitude. P

14. Dynamics of A Particle.
WITH NUMEROUS EXAMPLES.

By P. Q. TAIT, M. A., and W. J. STEELE, B.A.
Late Fellows of 8t. Peter’s College, Cambridge.

304 pp. (1856). Crown 8vo. cloth. 10s. 6d.

In this Treatise will be found all the ordinary propositions connected
with the Dynamics of Particles which can be conveniently deduced
without the use of D’'Alembert’s Principles. Throughout the book will
be found & number of illustrative Examples introduced in the text, and
for the most part completely worked out ; others, with occasional solutions
or hints to assist the student, are appended to each Chapter.

Cambridge and London.




8 CAMBRIDGE CLASS BOOKS

15. A Treatise on Attractions, La Place’s
Functions, and the Figure of the Earth.

By J. H. PRATT, M.A.
Archdeacon of Calcutta, late Fellow of Gonville and Caius College,
Cambridge,

Second Edition. Crown 8vo. 126 pp. (1861). cloth. 6s. 64.

In the present Treatise the author has endeavoured to supply the want
ofaworkm-suh]ectofgrutmporunoeandhxghmtemt— Place’s
Coeflicients and Funotions and the caloulation of the Figure of the Earth

maamof his remarkable analysis. No student of the higher branches

ysical Astronomy should be i ora.ntofLa 8 analysis and its
re-ult—“a calculus,” sa Ivl:‘An'y, o in its nature and the
most powerful in its app that lnl ever appeared.”

16. Dynamics of A System of Rigid
Bodies.

‘WITH NUMEROUS EXAMPLES.

By EDWARD JOHN ROUTH, M.A.
Fellow and Assistant Tutor of 8t. Peter’s College, Cambridge.

336 pp. (1860). Crown 8vo. cloth. 10s. 64.

Coxrents : Chap. I. Of Moments of Inertia.—II. D’Alembert’s Prin-
ciple.—III. Mohon about & Fixed Axis,—IV. Motion in Two Dimen-

sions.—V. Motion of a Rigid Body in Three Dimensions.—VI. Motion
ofa. Flexible 8tring.—VII. Motion of & System of Rigid Bodies.—VIII.
Of Impulsive Forces,.—IX. Miscellaneous Examples.

The numerous Examples which will be found at the end of each
chapter have been chiefly selected from the Examination Papers set in
the Univemty and Colleges of Cambridge during the last few years.

Macmillan and@ Co.
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17. A Treatise on Optics.

By 8. PARKINSON, B.D.
Fellow and Assistant Tutor of St. John’s College, Cambridge.

304 pp. (1859). Crown 8vo. 10s. 6d.

The present work may be a8 & new edition of the Z¥eatise on
Optics, by the Rev. W. N. Gri which being some time ago out of
E'rhint, was very kindly and liberally placed at the disposal of the author.

o author has freely used the liberty accorded to him, and has re-arranged
the matter with considerable alterations and additions—especially in those
parts which required more copious explanation and illustration to render
the work suitable for the present course of reading in the University.
A collection of Examples and Problems has been appended, which are
sufficiently numerous and varied in character to afford an useful exercise
for the student: for the greater part of them recourse has been had to
the Examination Papers set in the University and the several Colleges
during the last twenty years.

Subjoined to the copious Table of Contents the author has ventured to
indicate an elementary course of reading not unsuitable for the require-
ments t?f the First Days in the Cambridge Senate House Ex-
aminations.

18. Geometricé.l Treatise on Conic
Sections.

WITH A COPIOUS COLLECTION OF EXAMPLES.

By W. H. DREW, M.A.
Second Master of Blackheath School.

121 pp. (1857). Crown 8vo. cloth. 4s. 6d.

In this work the subject of Conic Sections has been placed before
the student in such a form that, it is hoped, after mastering the ele-
ments of Euclid, he may find it an easy and interesting continuation of
his geometrical studies. 'With a view also of rendering the work a com-
plete Manual of what is required at the Universities, there have been
either embodied into the text, or inserted among the examples, every
book-work question, problem, and rider, which has been proposed in the
Cambridge examinations up to the present time.

Cambridge and London.
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19. Plane Co-Ordinate Geometry

A8 APPLIED TO THE STRAIGHT LINE AND THE
CONIC SECTIONS;

With Humerons Exumples.
By 1. TODHUNTER, M. A.

Second Edition. 316 pp. (1858). Crown 8vo. cloth. 10s. 6d.

This Tyeatise exhibits the subject in & simple manner for the benefit of
beginners, and at the same time includes in one volume all that
students usually require. The Examples at the end of each chapter will,
it is hoped, farnish sufficient exercise, as they have been carefully selected
with the view of illustrating the most important points, and have been
tested by repeated experience with pupils.

20. An Elementary Treatise on the
Theory of Equations,

WITH A COLLECTION OF EXAMPLES.
By I. TODHUNTER, M. A.,

Crown 8vo. cloth. 7s. 6d.

This treatise contains all the propositions which are usually included
in elementary treatises on the Theory of Equations, together with a collec-
tion of Examples for exercise. It may be read by those who are familiar
with A.Igbm, since no higher knowl is assumed, except in Arts. 175,
267, 308—314, which may be med by those who are not acquainted
with De Moivre’s Theorem in Trigonometry, This work may in fact be
regarded as a sequel to that on Alﬁber: 'b! the same writer, and accord-
ingly the student has occasionally referred to the treatise on Algebra
for preliminary information on some topics here discussed.

Examples have been selected from the College and University ex-
amination papers, and the results have been given where it appeared
necessary ; in most cases however, from the nature of the question, the
student will be able immediately to test the correctness of his answer.

21. Examples of Analytical Geometry

of Three Dimensions.
Collectsd by I. TODHUNTER, M. A.

76 pp. (1858). Crown 8vo. cloth. 4s.
A collection of examples in illustration of Analytical

ng ; P
Three Dimensions has long been required both by students and
and the present work is published with the view of supplying the want.

Macmillan and Co.
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22. Conic Sections and Algebraic
Geometry.

WITH NUMEROUS EASY EXAMPLES PROGRESSIVELY
ARBANGED.

By G. H PUCKLE, MA.
Principal of Windermere College.
Second Edition. 264 pp. (1856). Crown 8vo. 7s. 6d.

This book has been written with ial reference to those difficulties
and misapprehensions which commonly beset the student when he com-
mences. %Vith this object in view, the earlier part of the subject has been
dwelt on at length, and geometrical and numerical illustrations of the
analysis have been introduced. 'The Examples appended to each section
are mostly of & very elementary description. The work will, it is hoped,
be found to contain all thatismqniredlljwy the upper classes of schools
and by the generality of students at the Universities.

23. An Elementary Treatise on Trilinear
Co-Ordinates.

THE METHOD OF RECIPROCAL POLARS, AND THE
THEORY OF PROJECTILES.

By N. M. FERRERS, M.A.
Fellow and Mathematical Lecturer of Gonville and Caius Coll. Cambridge.

154 pp. (1861). Crown 8vo. cloth. 6s. 6d.

The object of the Author in writing on this subject has mainly been
to place it on a basis altogether independent of the ordinary Cartesian
System, instead of regarding it as only a special form of abridged Notation.
A short chapter on Determinants has been introdu

24. The Differential Calculus.

Wity Fomerous Grumples,
By 1. TODHUNTER, M.A.
Third Edition, 398 pp. (1860) Crown 8vo. cloth, 10s. 6d.

This work is intended to exhibit a comprehensive view of the Differ-
ential Calculus on the method of Limits, In the more elementary
portions, explanations have been given in considerable detail, with the hope
that a reader who is without the assistance of a tutor may be enabled to
acquire & competent acquaintance with the subject. More than one in-
vestigation of a theorem has been frequently given, because it is believed
that the student derives advantage from viewing the same proposition
under different aspects, and that in order to succeed in the examinations
which he may have to undergo, he should be prepared for a considerable
variety in the order of mmgu:g the several branches of the subject, ar
for a corresponding variety in the mode of demonstration.

Cambridge and London.
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25. The Integral Calculus and Its
Applications.

Wity Yomerous Exumples.
By I. TODHUNTER, M.A.

268 pp. (1857). Crown 8vo. cloth. 10s. 6d.

In writing the present Tveatise on the Integral Caleulus, the object has
been to produce a work at once elementary and complete—adapted for the
use of beginners, and sufficient for the wants of advanced students. In
thnulecﬁonofthopmpodﬁo:inl:dinthemodeofesub' ing them,
the author has endeavoured to ibit fully and clearly the principles of
thembject,mdtoﬂlumdltheirmostim.ﬁomtmsulu In order
that the student may find in the volume that he requires, a large
oz‘l]ecﬁon of Examples for exercise has been appended to the different
chapters.

26. Differential Equations.

By GEORGE BOOLE, D.C.L.
Professor of Mathematics in the Queen’s University, Ireland.
468 pp. (1859). Crown 8vo. cloth. 14s. :

The Author has endeavoured in this treatise to convey as complete an
account of the present state of knowledge on the subject of the Dnﬁgren' tial
Equations as was consistent with the idea of a work intended, primarily,
for elementary instruction. The object has been first of all to meet the
wants of those who had no previous acquaintance with the subject, and
also not quite to disappoint others who might seek for more advanced
information. The wﬁer sections of each chapter contain that kind of
matter which has usually been thought suitable for the beginner, while
the latter ones are devoted either to an account of recent d.iaoovehl.'ky, or to
the discussion of such r questions of principle as are likely to
present themselves to the ive student in connection with the methods
and processes of his previous course.

27. The Calculus of Finite Differences.
By GEORGE BOOLE, D.C.L.

248 pp. (1860). Crown 8vo. cloth. 10s. 6d.

In this work particular attention has been paid to the connexion of the
methods with those of the Differential Calculus—a connexion which in

some instances involves far more than a merely formal analogy. The
work is in some measure deaE::d as & sequel to the Author's 19¢ on
Differential Equations, and it been composed on the same plan.

Macmillan and Co.
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28. Singular Properties of the Ellipsoid
AND ASSOCIATED SURFACES OF THE Ath DEGREE.

By the Rew. G. F. CHILDE, M. A.
Mathematical Professor in the South African College.
152 pp. (1861). 8vo. boards. 10s. 6d.

As the title of this volume indicates, its object is to develope pecu-
liarities in the Ellipsoid; and further, to establish analogous properties
in unlimited congeneric series of which this remarkable surface is a con-
stituent.

29. Senate-House Mathematical Problems.

WITH SOLUTIONS.

1848-51. By FERRERS and JACKSON. 8vo. 15s. 6d.
1848-51. mEens). By JAMESON. 8vo. 7s. 6d.
1864. By WALTON and MACKENZIE. 8vo. 10, 64.
1857. By CAMPION and WALTON. 8vo. 8s. 6d.°
1860. By ROUTH and WATSON. Crown 8vo. 7s. 6d.

The above books contain Problems and Examples which have been
get in the Cambridge Senate-house Examinations at various periods
during the last twelve years, together with Solutions of the same.
The Solutions are in all cases given either by the Examiners them-
selves or under their sanction.

30. A Collection of Mathematical

Problems and Examples,

‘WITH ANSWERS.
By H A. MORGAN, M A,
Fellow of Jesus College, Cambridge.
190 pp. (1858). Crown 8vo. 6s. 6d.

This book contains a number of problems, chiefly elementary, in the
Mathematical subjects uaml?' at Cambridge. They have been
selected from the papers set during late years at Jesus College. Very
few of them are to be met with in other collections, and by far- the
h.rgr number are due to some of the most distinguished Mathematicians
in the University, .

31. Mathematical Tracts

ON THE LUNAR AND PLANETARY THEORIES, FIGURE
OF THE EARTH, THE UNDULATORY THEORY OF
OPTICS, &c.

By the ASTRONOMER ROYAL, G. B. A1ry, M.A.
Fourth Edition. 400 pp. (1858). 8vo. 1gs.
Cambridge and London.
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32. Theory of Errors of Observations and

the Combination of Observations.
By the ASTRONOMER ROYAL, G. B. Ay, M.A.

103 pp. (1861). Crown. 8vo. 6s. 6d.

In order to spare astronomers and observers in natural philosophy
the confusion and loss of time which are produced by referring to the
ordinary treatises embracing both branches of Probabilities, the author
has thought it desirable to draw up this work, relating only to Errors of
Observation, and to the rules derivable from the consideration of these
Errors, for the Combination of the Results of Observations. The Author
has thus also the advantage of entering somewhat more fully into several

ints of interest to the observer, than can possibly be done in a General
eory of Probabilities.

33. The Construction of Wrought-Iron
; Bridges.
EMBRACING THE PRACTICAL APPLICATION OF THE

PRINCIPLES OF MECHANICS TO WROUGHT-IRON
GIRDER-WORK.

By J. HERBERT LATHAM, M.A., Civil Engineer.

“The great merit of this book is that it deals with practice more than
theory. All the calculations in the book connected with the strength of
girders are based upon their actual application which abounds in practical
investigations into girder-work in all its bearings, and will be welcomed as
one of the most valuable contributions yet made to this important bramch of
ongineering.” —ATHEN EUM. .

34. History of the Progress of The

Calculus of Variations

DURING THE NINETEENTH CENTURY.

By I. TODHUNTER, M.A.
Fellow and Principal Mathematical Lecturer of St. John’s Coll. Camb.

It is of importance that those yho wish to cultivate any subject may
be able to ascertain what results have already been obtained, and thus
reserve their strength for difficulties which have not yet been conquered.
And those who merely desire to ascertain the present state of a subject
without any purpose of original investigation will often find that the
study of the past history of that subject assists them materially in ob-
taining & sound and extensive knowledge of the condition which it has
attained. 'The Author has endeavoured in this work to ascertain distinctly
wh'nt has been effected in the Progress of the Calculus, and to form some
estimate of the manner in which it has been effected : accordingly, unless
the contrary is distinctly stated, it may be assumed that any treatise or
memoir relating to the Calculus of Variations which is described in thia
~vork has undergone thorough examination and study.

Macmillan and Co
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35. Help to Latin Grammar.

WITH EASY EXERCISES, BOTH ENGLISH AND LATIN,
QUESTIONS AND VOCABULARY.

. By J. WRIGHT, M.A.
Head Master of Sutton Coldfield School.

175 pp. (1855). Crown 8vo. cloth. 4s. 6d.

“This book aims at helping the learner to overstep the threshold
difficulties of the Latin Grammar; and never was there a better aid
offered alike to teacher and scholar in that arduous pass. The style is at
once familiar and strikingly simple and lucid; and the explanations pre-
cisely hit the difficulties, and thomnghlm them. It will also
m%&a’litutethemqrﬁmentof English .”’—ENGLISHE JOURNAL
or Epvoariox.

36. The Seven -Kings of Rome.

A FIBST LATIN READING BOOK, ABRIDGED FROM LIVY,
BY THE OMISSION OF DIFFICULT PASSAGES, WITH
NOTES AND INDEX.

By J. WRIGHT, M. A.
Second Edition. 138 pp. (1857). Feap. 8vo. cloth. 3s.

This work is intended to supply the pupil with an Ooﬂ'm'umﬁ' book,
which may, at the same time, geymn.de Sm vehicle %::yimtmcﬁng im in
the rules of r and principles of composition. These branches of
the study of Latin seem to the author to have hitherto been kept too much
apart. ys have construed their Delectus, or Eutropius, or Nepos, and
have gone elsewhere for their grammatical exercises. Nor can this be
e papll svay from o aoed Enght suthory. and sotig. bofore hins

pupils away our ish au setting before hi
ﬁéhm?:lag [ g)electm i“):o Eghuopiua. Hcil therefore B.lkei,m:m(lwlgs them as

, and esca; m them as qui a8 possil recourse
for h?n oomposig:l.x lesson to oneqof thz many exercise-books which
swarm from our educational press. To remedy these evils this book
has been published. Here Livy tells his own pleasant stories in his own
pleasant words. What is omitted, is that which no one can wish
a beginner to learn, and which may be better learnt elsewhere. Let
Livy be the master to teach a boy Latin, not some English collector of
sentences, and he will not be found a dull one.

Cambridge and London.
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87. Vocabulary and Exercises on “ The
Seven Kings of Rome.”

94 pp. (1857). Crown 8vo. cloth. 2. 6d.

The Voubuh? is published apart from the Text'in order to suit the
views of those who prefer their pupils to consult a general dictionary,
but it may also be bound together with the ¢‘Sevexn Kines or
Roue,” if preferred. As the aim of the Text is to teach the elements
of grammar, so the Exercises are intended to test the pupil’s know. of

. Indeed there is hardly an ordinary Latin construction which
i8 not illustrated in the text, explained in the notes, and proved in the
exercises.

38. Hellenica.

A First Greek Reading Book.
FROM DIODORUS AND THUCYDIDES. WITH VOCABULARY.

By J. WRIGHT, M.A.
Author of “ A Latin Grammar.”

Second Edition. 150 pp. (1851). Feap. 8vo. cloth. 3s. 6d.

In the last twentachapbers of this volume, Thucydides sketches the
rise and progress of the Athenian Empire in 8o clear & style and in such
simple language, that the author doubts whether any easier or more
instructive can be selected for the use of the pupil who is
ocommencing

39. A First Latin Construing Book.

By EDWARD THRING, M.A.
Head Master of Uppingham School.

104 pp. (1855). Feap. 8vo. 2s. 6d.

This Construing Book is drawn up on the same sort of graduated scale
a8 the Author's English Grammar. Passages out of the best Latin Poeta
are gradually built up into their perfect shape. The few words altered, or
inserted as the passages go om, are printed in Italics. It is hoped by
this plan that the learner, whilst acquiring the rudiments of language,-
may store his mind with good poetry and a good vocabulary.

Macmillan and Co.
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40. Juvenal.

WITH ENGLISH NOTES.
By JOHN E. B. MAYOR, M. A.
Fellow and Classical Lecturer of 8t. John's College, Cambridge.
464 pp. (1854). Crown 8vo. cloth. 10s. 6d.

“A Bchool edition of Juvenal, which, for really ripe scholarshi
extensive acquaintance with Latin literature, and familiar knowledge wi
Continental criticism, ancient and modern, is unsurpassed, we do not say
among English School-books, but among English editions generally.”—

41. Cicero’s Second Philippic.
WITH ENGLISH NOTES.
By JOHEN E. B. MAYOR, M.A.

168 pp. 1861). Fep. 8vo. cloth. gs.

The Text is that of Halm’s 2nd edition (Leipeig, Weidmann, 1858),
with some corrections from Madvig’s 4th Edition (Copenh: 1858),
Halm’]a:slntxx;cﬁon has‘;:een clot:ily translated, with some additions. His
notes have curtailed, omi or enlarged, at discre tion;puuges
to which he gives a bare reference, are for the most part printed at
length ; for the Greek extracts an English version has been substituted.
A large body of notes, chiefly grammatical and historical, has been added
from various sources. A list of books useful to the student of Cicero,
:hco 'ouks' Argument, and an Index to the introduction and notes, complete
0

42, Sallust.

‘WITH ENGLISH NOTES.

By C. MERIVALE, B.D.
Author of “A History of Rome,” &e.
Second Edition. 172 pp. (1858). Fcap. 8vo. 4s. 6d.

¢ This School edition of Sallust is precisely what the School edition of
a Latin author ought to be. No useless words are spent in it, and no
words that could of use are spared. The text has been carefull
collated with the best editions. It is printed in a large bold ogpe, whi
manifests & just regard for the young eyes that are to work upon it:
under the text there flows through e page & full current of éx-
tremely well-selected annotations,”—THz

The ““ CaTILINA” and * JUcURTEA" may be had separately, price
2s. 6d. each, bound sn oloth.
Cambridge and London.
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43. Demosthenes on the Crown.
WITH ENGLISH NOTES.
By B. DRAKE, M.A.

Late Fellow of King’s College, Cambridge.
Second Edition. To which is prefixed ZESCHINES AGAINST
CresreEox. With English Notes.

287 pp. (1860). Feap. 8vo. cloth. gs.

The first edition of the late Mr. Drake’s edition of Demosthenes de
Corona having met with considerable acceptance in various Schools, and
8 new edition being called for, in accordance with the wishes of many
teuchmhaabeenappendedﬂmOntmnoanmaguthtenphom
with useful notes by a competent scholar.

44. Demosthenes on the Crown.
TRANSLATED INTO ENGLISH.
By J. P. NORRIS, M. A,
H.M. Inspector of Schools.
(1850). Crown 8vo. 3s.

¢ Admirably representing both the semse and style of the original.”
—ATHENEUM.

45. Thucyd.ides. Book VI

WITH ENGLISH NOTES, MAP AND INDEX.,
By P. FROST, Jun., M. A.
Late Fellow of St. John’s College, Cambridge.
8vo. cloth. 7s. 64.

It has been attempted in this work to facilitate the attainment of
accuracy in translation. With this end in view the Text has been treated

grammatically.

46. Alschyli Eumenides.

WITH ENGLISH VERSE TRANSLATION, COPIOUS
INTRODUCTION, AND NOTES.

By B. DRAKE, M.A.
Editor of ¢ Demosthenes de Corona.”

Mr. Drake’s ability as a critical Scholar is known and admitted. In
the edition of the Eumenides before us we meet with him also in the
i s sl Moo B T ot
ous, elegan 0] e. e ext is
the notes are clear and useful.”’—GUARDIAN.
Macmillan and Co.
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47. Elements of Grammar Taught in
English.
WITH QUESTIONS.

By EDWARD THRING, M.A.
Head Master of Uppingham Grammar School.

Third Edition. 136 pp. (1860.) Demy 18mo. 2s.

48. The Child’s English Grammar.
- By the same Author.
New Edition. 86 pp. (1859). Demy 18mo. 1s.

The Author’s effort in these two books has been to point out the broad,
beaten, every-day path, carefully avoiding digressions into the byeways
and eccentricities of language. is Work took its rise from question-
ings in National Schools, and the whole of the first part is merely
the writing out in order the answers to questions which have been
used y with success. The study of Grammar in English has
been much neglected, nay by some put on one side as an impossibility.
There was ps much ground for this opinion, in the medley of arbi-
trary rules thrown before the student, which applied indeed to & certain
number of instances, but would not work at all in many others, as must
always be the case when principles are not put forward in & full
of ambiguities. The present work does not, therefore, pretend to be
& compendium of idioms, or & philological treatise, but a . Or
in other words, its intention is to teach the learner how to speak and
write carrectly, and to understand mmhin the and writings of
others. Its success, not only in National Schools, from practical work in
wﬁhitmok its rise, but in classical schools, is full of encourage-
m

49. School Songs.
A COLLECTION OF SONGS FOR SCHOOLS.
Wity the Wosic Jramged for Four Voices.
Edited by the Rev. E. THRING, and H. RICCIUS.

Music Size. 7s. 64.
Cambridge and London.
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50. St. Paul’s Epistle to the Romans.
THE GREEK TEXT WITH ENGLISH NOTES.

By C. J. VJUGEAM D.D.
Head Master of Harrow School.

Second Edition. Crown 8vo. cloth (1861). ga.

By dedicating this work to his elder Pupils at’ Harrow, the Author
hopes that he sufficiently indicates what is and what is not to be looked

for in it. He desires to record his impression, derived from the ience
of many years, that the Epistles of the New Testament, no less the
are capable of ishing useful and solid instruction to the

highest classes of our Public Schools. If they are taught accurately, not
controversially ; positively, not negatively; authoritatively, yet not
dogmatically; taught with close and constant reference to their literal
meaning, to the connexion of their parts, to the sequence of their argu-
ment, a8 well as to their moral and spiritual instruction; they will
interest, they will inform, they will elevate; they will inspire a rever-
ence for Scripture never to be discarded, they will awaken a desire to
;nm;k momed.deeply of the Word of God, certain hereafter to be gratified

RELIGIOUS CLASS BOOKS.

THE CHURCH CATECHISM ILLUSTRATED AND EX-

rx.éinnn. By ARTHUR RAMSAY, M.A. 804 pp. (1854). 18mo. cloth.
38.

NOTES FOR LECTURES ON CONFIRMATION: With

Suitable Prayers. By C.J. VAUGHAN D.D. Third Edition. 70 pp. (1860).
Fep. 8vo. 1s. 6d.

IE[AND-BOOK TO BUTLER'S ANALOGY. By C. A.
SWAINSON, M.A. 55 pp. (1856). Crown 8vo. 1s.6d.

HISTORY OF THE CHRISTIAN CHURCH DURING
THE FIRST THREE CENTURIES, AND THE REFORMATION IN ENG-
LAND. By WILLIAM SIMPSON, M.A. 307 pp. (1857). Fep. 8vo. cloth. ss.

ANALYSIS OF PALEY'S EVIDENCES OF CHRISTI-
ANITY. By CHARLES H. CROSSE, M.A. 115 pp. (1855). 18mao. 3s. 6d.
Macmillan and Co.
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MANUALS FOR THEOLOGICAL
STUDENTS.

UNIFORMLY PRINTED AND BOUND.

This 8eries of Theological Manuals has been published with
,the aim of supplying Books concise, comprehensive, and
accurate, convenient for the Student and yet interesting
to the general reader.

HISTORY OF THE CHRISTIAN CHURCH
DURING THE MIDDLE AGES. By ARCHDEACON HARD-
WICK. BSecond Edition. 482 pp. [1861]. With Maps. Crown
8vo. cloth. 10s. 6d.

This Volume claims to be a8 an integral and independent
treatise on the Mediseval Church. The History commences with the
time of Gregory the Great, because it is admitted on all hands that his

ntificate became a tu.mini-point, not only in the fortunes of the
Westerﬁm tribes and nt;ﬁons, ut offC i 0131 at large. Atii:dred
reason sngﬁ:ewd e propriety of pausing at the 1620,— €ar
when Luther, ing been extruded mthmﬂhmthatﬁhem{lw
the Communion of the Pope, established a provisional form of government
and opened a fresh era in the history of Europe.

HISTORY OF THE CHRISTIAN CHURCH
DURING THE REFORMATION. By Arcepx. HARDWICK.
469 pp. [1856]. Crown 8vo. cloth. 10s. 64.

This Work forms a Sequel to the Author's Book on The Middle Ages.
The Author's wish has been to give the reader a trustworthy version of
those stirring incidents which mark the Reformation period.
Cambridge ‘and London.
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MANUALS FOBR THEOLOGICAL STUDENTS—Continued.

HISTORY OF THE BOOK OF COMMON
PRAYER. With a Rationalo of its Ofices. By FRANCIS
PROCTER, M.A. Fifth Edition. 464 pp. [1860]. Crown Svo.
cloth. 10s. 64.

The Subject of this Book has been already treated by numerous
writers of distinction. When the present series of Manuals was projected,
it did not appear that any one of the existing volumes taken y wes
available for the desired object.  In the course of the last twenty years -
the whole question of liturgical knowledge has been reopened with great
learning and accurate research, and it is mainly with the view of epito-
mising their extensive publications, and correcting by their help the
errors and misconceptions which had obtained currency, that the present
volume has been put together.

HISTORY OF THE CANON OF THE NEW
TESTAMENT DURING THE FIBRST FOUR CENTURIES.
By BROOKE FOSS WESTCOTT, M.A. 694 pp. [1865).
Crown 8vo. cloth. 12¢. 64,

The Author has endeavoured to connect the hi of the New Testa-
ment Canon with the growth and consolidation of the Catholic Church,
and to point out the relation existing between the amount of eviden
for the authenticity of its component parts and the whole mass of Christi
literatare. Such & method of mv%ng will convey both the truest notion
of the connexion of the written Word with the living Body of Christ, and
the surest conviction of its divine authority.

INTRODUCTION TO THE STUDY OF THE
GOSPELS. By BROOKE FOSS WESTCOTT, M.A. 458 pp.
[1860]. Crown 8vo. cloth. 10e. 6d.

The title of this book will explain the chief aim which the Author
had in view. It is intended to be an Introduction to the Study of the
Gospels. The Author has therefore confined himself in many cases to
the mere indication of lines of thought and inquiry from the conviction
tbattrnthisfelttobemorepreoionsinpvr:})orﬁonuitisopenedtom
by our own work. In a subject which involves so vast a literature much
must have been overlooked ; but the Author has made it a point at least
to study the researches of the great writers, and consciously to neglect

none.
Macmillan and Co., Cambridge and London.



su T“" Books suifuble for College und School Prizes. xozo000

KEPT IN VARIOUS BINDINGS BY THE PUBLISHERS.

=" TOM BROWN’S SCHOOL DAYS. By AxOup Box. Seventh ~
Edition. Feap. 8vo. cloth. ss. 118,

9s.
or. 6d. THE HEROES; or GREEK FAIRY TALES. By Cmaxies ,.
KiNosLEY, Beeﬁor of Eversley. Second Edition, with Eierr Iu.vn'unou °
Imperial 16mo. cloth, gilt leaves. ss.

gs.64. DAVID, KING OF ISRAEL; Readings for the Young.
;Vm 8rx ILLusTRATIONS, By J. Weienr, M.A. Imp. 16mo. cloth.

os. 6. LITTLE ESTELLA AND OTHER FATRY TALES. Imp. o

16mo. cloth. ss.
DAYS OF OLD: STORIES FROM OLD ENGLISH
9s. 6d. HISTORY of the Dmlds, Anglo-Snons, and the Crusaders. By the Author 129,

of Rure aAxp Her Frienps. Imperial 16mo. cloth. ss.

os. 62, RUTH AND HER FRIENDS. A Story for Girls. Third ,,,
Edition. With a Frontispiece. Imp, 16mo. cloth. ss.

-

gt 6d. OUR YEAR: A Child’s Book in Proso and Verse. By the [,

Al:a% ofs.“ John Halifax.” Numerous Illustrations. Royal 16mo. oloth, gilt *

11s. WESTWARD HO! THE ADVENTURES OF SIR AMYAS P4,
LEIGH in the Reign of Elizabeth. Third Edition. By Cmarres KiNasLEY.

Crown 8vo. cloth.
TWO YEARS AGO By Cmarres Kiwaescey. Third Edition.
118 Crown 8vo. cloth. 6. 145,
11s. THE RECOLLECTIONS OF GEOFFRY HAMLYN By |
" HENRY KINGSLEY. Szooxp Evrriox. Crown 8vo. cloth, Gs. 42
GLAUCUS; or, WONDERS OF THE SHORE. B;JY CHARLES
122, Kinostry. - ILuusrearzp Eprriow, containing Coloured Diustrations of 148 6d.

;ha objects mentioned in the Work. Imp. 16mo. cloth, gilt leaves.
8. 6d.
ESSAYS, CHIEFLY ON ENGLISH POETS. By Davmo

18s. Musox,ll.A 8vo. cloth. 12s. 6d. 228, 6d.
16, THE REPUBLIC OF PLATO. Translated into English by .., 6z
dmng; Davizs, M.A., and D.J. Vavernan, M.A. Second 8vo. s

36e. ARCHER BUTLER'S HISTORY OF ANCIENT PHI- .
LOSOPHY. 2 vols. 8vo. cloth, 1l 5.

HISTORY AND RATIONALE OF THE BOOK OF COM- g, ..
MON PRAYER. By F. PRooTRR, M.A. 5th Edition. Crown 8vo. cloth. 10e. 6d.

150.6d. HISTORY OF THE CHRISTIAN CHURCH DURING 13s. 6d.
each. THE MIDDLE AGES AND THE REFORMATION. By ArcEpxacox each.
HARDWICK. 2 vols. Crown 8vo. cloth, 10s, 6d. each volume.,

HISTORY OF THE CANON OF THE NEW TESTAMENT.
178. 6d. By B. F. Wesrcorr, M.A. Third Edition. Crown 8vo, cloth. 12s, 6d. - 208, 6d,

INTRODUCTION TO THE STUDY OF THE GOSPELS.
By B. F. WESTCOTT, M.A. Crown 8vo. cloth. 10e, 6d. . 183, 6d.

GEORGE BRIMLEY’S ESSAYS. Second Edition. Fep.
9%, 8vo. cloth. s, 118,

s, THE PLATONIC DIALOGUES FOR ENGLISH READERS 5. 6d.
358 By W. WHEWELL, D.D, 3 Vols. Fep. 8vo. cloth. a1s. 64, .

158. 64.

158 6d.
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FORTHCOMING BOOKS.
Euclid for the Use of Schools and Colleges.

By I. TODHUNTER, M.A. [In the Press.

First Book of Algebra. For Schools. By

J. C. W. ELLIS, M.A,, and P. M. CLARK, M.A,, Bidney Sussex
College, amndge [Preparing.

An Elementary Treatise on Quaternions.
With numerous Examples. By P. G. TAIT, M.A., Professor of
Natural Philosopby in the University of Edmburgh. [Preparing.

A Treatise on Geometry of Three Dimen-

glons.
PERCIVAL FROST, M.A, 8t. Johus College, snd JOSEPH
v?ox.s-mnnox.nn, M.A., Christ’s College, Cam
[z,. the Press.

o,® The First Portion has been {ssued for the convenience of Cambridge Students.

An Elementarz Treatise on the Plane

THEORY. By H. CHEYNE, B.A, Scholar of 8t. John's
College, Cambris [Preparing.

Aristotelis de Rhetorica. 'With Notes and

Introduction. By E. M. COPE, M.A., Fellow and Assistant Tutor
of Trinity College, Cambridge.

The New Testament in the Original Greek.

Text revised by B. F. WESTCOTT M.A,, mdF J. HORT, M.A,,
formerly Fellows of Trinity College.

MACMILLAN AND CO.
Cumbridge ;
AND 2, HENRIETTA STREET, COVENT GARDEN, LONDON, W.C.

domathan Palmer, Primer, Cumbridge.
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